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Abstract—Communication-centered programming is one of
the most challenging programming paradigms. Development of
modern software applications requires expressive mechanisms to
specify and verify the communications between different parties.
In the last decade, many works have used session types to
characterize the various aspects of structured communications.
Different from session types, we propose a novel session logic
with disjunctions to specify and verify the implementation of
communication protocols. Our current logic is based on only two-
party channel sessions, but it is capable of handling delegation
naturally through the use of higher-order channels. Due to our
use of disjunctions to model both internal and external choices,
we rely solely on conditional statements to support such choices,
as opposed to specialized switch constructs in prior proposals.
Furthermore, since our proposal is based on an extension of
separation logic, it also supports heap-manipulating programs
and copyless message passing. We demonstrate the expressivity
and applicability of our logic on a number of examples.

I. INTRODUCTION

With the success of tools like [1], [2] and [3] for the
development and verification of non-concurrent systems, there
are now deeper desires for similar tools for distributed sys-
tems. Additionally, the communication requirement, which is
ubiquitous in software systems from the information exchange
between software entities to the communication of these
systems with their environments, must be properly verified
to affirm the system’s correctness. Due to its importance,
a number of researchers have focused on the problems of
ensuring safe communication in the last few decades.

CSP (Communicating Sequential Processes) [4] and CCS
(Calculus of Communicating Systems) [5] are among the
earliest theories to address the communication problems. The
most recent extensions for these works are based on session
types, and their derivatives, such as contracts [6]. In the last
decade, session types have been integrated into a number
of programming languages and process calculi, including
functional languages [7], [8], object-oriented languages [9],
[10], calculi of mobile processes [11], and higher-order pro-
cesses [12]. Recently, session types have also been extended
with logic [13] to act as a contract between the communication
entities. This extension allows a more precise verification of
the involved parties by enabling a concise specification of the
transmitted messages on what one party must ensure, and from
which the other party can rely on it. There was also a proposal
for multi-party session logic [14], but this logic tries to also

summarize the effects of processes involved in the protocol. In
contrast, we propose a session logic which focuses entirely on
the communication patterns, while the effects of the associated
processes are summarized directly in each thread’s pre- and
postcondition.
Contributions: Different from previous approaches, we pro-
pose a session logic with a novel (and natural) use of dis-
junction to specify and verify the implementation of com-
munication protocols. Even though the currently proposed
logic is based on two-party channel sessions, it can also
handle delegation through the use of higher-order channels.
Unlike past solution on delegation [10], our proposal uses the
same send/receive channel methods for sending values, data
structures, and channels. For example, [10] requires a separate
set of send/receive methods to support higher-order channels.
Furthermore, due to our use of disjunctions to model both
internal and external choices, we need only use conventional
conditional statements to support both kinds of choices. In
contrast, past proposals typically require the host languages
to be extended with a set of specialized switch constructs to
model both internal and external choices. Additionally, our
proposal is based on an extension of separation logic, and thus
it supports heap-manipulating programs and copyless message
passing. Lately, Villard et al. [15] have designed a logic for
copyless message passing communication. Their logic relies
on state-based global contracts while our more general logic
of session is built as an extension of separation logic with
disjunction to support communication choices. The logical for-
mulae on protocols can also be localised to each channel and
may be freely passed through procedural boundaries. Villard et
al. [15] currently use double-ended channels to solely support
communication safety, but do not guarantee deadlock freedom.
In contrast, a channel in our proposal is multi-ended with
its complementary properties captured in local specifications,
which are supplied via each of the channel’s aliases. As
channels can support a variety of messages, we can treat
the read content as dynamically typed where conditionals are
dispatched based on the received types. Alternatively, we may
also guarantee type-safe casting via verifying communication
safety. We can also go beyond such cast safety by ensuring that
heap memory and properties of values passed into the channels
are suitably captured. Lastly by using a subsumption relation
on our communication proposal, we allow specifications on



channels to differ between threads but would ensure that they
remain compatible at each join point, in order to prevent
intra-channel deadlocks. More realistically, we also assume
the presence of asynchronous communication protocols, where
send commands are non-blocking.

In this paper, we argue strongly on the simplicity, expressiv-
ity and applicability of our logic by demonstrating it through
a number of examples.

II. A MOTIVATING EXAMPLE

We introduce our session logic-based approach by using a
simple business protocol example between Buyer and Seller.
From the beginning, the Buyer sends the product name as a
String object to the Seller. The Seller replies by sending the
product’s price as an int. If Buyer is satisfied with the price,
she sends the address as an object of type Addr and Seller
sends back the delivery date as an object of type Date (the
definitions of these types are presented in the appendix A).
Otherwise, the Buyer quits the conversation. This example is
modeled as 2-party session in Fig. 1. In a 2-party session,
one channel is typically sufficient for communication between
two parties. We can summarize this Buyer-Seller protocol
by using the following session type to represent the Buyer’s
communication pattern:

Fig. 1: Sequence diagram for an item purchasing

buyer ty ≡ begin; !String; ?int;
!{ok :!Addr; ?Date; end, quit : end}

The dual (or complement) of the above session type corre-
sponds to the Seller’s communication pattern, namely:

seller ty ≡ ∼buyer ty
≡ begin; ?String; !int;

?{ok :?Addr; !Date; end, quit : end}

In the above, !t denotes an output of a value of type t,
dually for ?t which denotes input instead. The type !{ok :
..., quit : ...} denotes an internal choice (decision based on
local values) of the options, while the type ?{ok : ..., quit :
...} denotes an external choice (decision based on received

labels) of the options. The options are represented by different
labels which are sent/received over the channel. The type
begin represents the beginning of the conversation, while the
type end represents the termination of the conversation for a
given channel. Traditionally, a program that implements the
above protocol uses specialized switch constructs [16] like
outbranch and inbranch to model the internal and external
choices respectively:

void buyer(buyer ty c, String p) void seller(seller ty c)
{ send(c, p); { String p = receive(c);
Double price = receive(c); send(c, getPrice(p));
Double budget = ...; inbranch(c) {
if price <= budget then{ case ok : {
outbranch(c, ok){ Addr a = receive(c);
Addr a = ...; ShipDate sd = ...;
send(c, a); send(c, sd);
ShipDate sd = receive(c); }
}} else outbranch(c, quit){} case quit : { }

} } }

For our session logic-based approach, the above communi-
cation patterns for Buyer and Seller could be represented, as
follows:

buyer ch ≡ !String; ?int; ((!1; !Addr; ?Date)∨!0)
seller ch ≡ ∼buyer ch

≡ ?String; !int; ((?1; ?Addr; !Date)∨?0)

Superficially, this logical specification looks similar to
session type; however, there are several notable differences.
Firstly, there is no need for any begin/end declarations since
our protocol is expected to be locally captured after creation
(without restriction). Secondly, we make use of disjunction1

instead of some specialized notations for internal and external
choices. Thirdly, instead of message labels (such as ok and
quit), we may just use values (such as 1 or 0) or even types
themselves to capture the distinct scenarios for internal and
external choices. This allows us to directly use conditionals to
support choices which are naturally modelled by disjunctive
formulae during program reasoning. Most importantly, instead
of types or values, we allow more general properties (including
ghost properties) to be passed into channel to facilitate the
verification of functional correctness properties, which can go
beyond communication safety. This also includes the use of
higher-order channels to model delegation, where channels and
their expected specifications are passed as messages.

As a simple illustration, we may strengthen channel speci-
fication by using positive integers instead of merely integer
prices. This change is captured by the following modified
channel specification for Buyer.

buyer chan ≡ !String; ?r:int · r>0; ((!1; !Addr; ?Date)∨!0)
seller chan ≡ ∼buyer chan

Note that our channel specification uses several abbrevi-
ated notations. ?1 is a short-hand for ?r · r:int∧r=1, while

1To support unambiguous channel communication, the disjunction by
receiver must have some disjoint conditions, so that we may guarantee its
synchronization with the sender.



!String is a shorthand for !r · r:String∧true. The specifi-
cation seller chan is the dual specification of buyer chan.
Such dual specification are obtained by inverting the polarity
of messages, where input is converted to output and vice-versa.
We can also support separation formulae for pointer-based
message passing for shared memory implementation. When
separation formula is emp we use abbreviated notations, such
as ?r:int · r>1 as a short-hand for ?r · emp ∧ r:int ∧ r>1.
Another issue worth noting is that thread specification and
channel specification need not be identical. As an example, let
us specify a stronger specification for seller’s communication
with the protocol, by insisting that price of products sold by
this seller is at least 10 units, as follows:

seller sp ≡ ?String; !r:int · r>10; ((?1; ?Addr; !Date)∨?0)

With this change, we can write a program that implements
the above protocol, as shown below. Note that we can directly
use conditionals instead of the specialized switch constructs.

open(c) with buyer chan;
(buyer(c, prod) || seller(c));
close(c);

void buyer(Chan c, String p) void seller(Chan c)
requires C(c, buyer chan) requires C(c, seller sp)
ensures C(c, emp) ensures C(c, emp)

{ send(c, p); { String p = receive(c);
Double price = receive(c); send(c, getPrice(p));
Double budget = ...; int usr opt = receive(c);
if (price <= budget) then{ if (usr opt==1){
send(c, 1); Addr a = receive(c);
Addr a = ...; ShipDate sd = ...;
send(c, a); send(c, sd);}
ShipDate sd = receive(c); else
} else send(c, 0); assert usr opt = 0;
} }

The channel is opened in the main process by open which
takes as argument the channel specification. One alias of
the opened channel with the specification buyer chan is
passed to the thread buyer while the other alias with its dual
specification seller chan is passed to the process seller.
The two processes are running in parallel. Each process can
have its own separate protocol specification which differs,
while being consistent with the channel’s specification. The
seller process specification seller sp imposes a stronger
property over the sent price, using r>10 instead of r>0 that
was captured in the channel specification seller chan. When
a channel is passed into a thread, we will need to ensure
that the channel’s specification subsume that specified in the
thread’s specification. For the buyer thread in our exam-
ple, this means that C(c, buyer chan) ` C(c, buyer chan)
which trivially succeeds. For the seller process, we would
require C(c, seller chan) ` C(c, seller sp). This second
entailment also succeeds because the subsumption for sending
operation is contravariant, as illustrated below.

r>10 ` r>0
!r · r>0 ` !r · r>10

seller chan ` seller sp
C(c, seller chan) ` C(c, seller sp)

Before a channel is used, it must first be opened by
open(c) together with an appropriate channel specification.

spred ::= p(root, v∗) ≡ Φ Φ ::=
∨
σ∗ σ ::= ∃ v∗·κ∧π

mspec ::= requires Φpr ensures Φpo;
S ::= emp | ?r ·Φ | !r ·Φ | ∼S | S1;S2 | S1 ∨ S2

∆ ::= Φ | ∆1∨∆2 | ∆∧π | ∆1∗∆2 | ∃v·∆
κ ::= emp | v 7→c(v∗) | p(v∗) | κ1 ∗ κ2 | C(v, S) π ::= γ ∧ φ
γ ::= v1=v2 | v=null | v1 6=v2 | v 6=null | γ1∧γ2
φ ::= r : t | ϕ | b | a | φ1∧φ2 | φ1∨φ2 | ¬φ | ∃v · φ | ∀v · φ
b ::=true | false | v | b1 =b2 a ::=s1=s2 | s1≤s2
s ::= kint | v | kint×s | s1+s2

| −s | max(s1,s2) | min(s1,s2) | |B|
ϕ ::= v∈B | B1=B2 | B1<B2 | B1vB2 | ∀v∈B·φ | ∃v∈B·φ
B ::= B1tB2| B1uB2 | B1−B2 | ∅ | {v}

Fig. 2: The Specification Language.

∼!r ·∆ =?r ·∆ ∼?r ·∆ =!r ·∆
∼(S1 ∨ S2) = ∼S1 ∨ ∼S2 ∼(S1;S2) = ∼S1;∼S2

Fig. 3: Rules for Dual Specification.

In contrast to previous work (such as [6] where two ends
of a single channel are explicitly created, we only use a
single channel name but allow aliases, so that complementary
operations using send and receive can be communicated
over its opened channel. In the end, the main process is
allowed to destroy the created channel. Note that the function
int getPrice(String) specifies in its postcondition that its
result is always greater than 10. With this, the verification of
the bodies of both processes succeeds.

III. SESSION LOGIC

We develop our session specification language on top of
the specification language (in Fig. 2) from [17]. The lan-
guage allows (user-defined) shape predicates spred to specify
program properties in a combined domain. Note that such
predicates are constructed with disjunctive constraints Φ. A
session specification for channel v is represented by C(v, S)
where S can denote a sending communication, a receiving
communication, a sequence of communication operations and
a choice of communication operations. S can also capture pure
(e.g. type) or heap properties of the exchanged messages. A
conjunctive abstract program state σ has mainly two parts: the
heap (shape) part κ in the separation domain and the pure part
π in convex polyhedra domain and bag (multi-set) domain,
where π consists of γ, φ and ϕ as aliasing, numerical and
multi-set information, respectively. kint is an integer constant.
The square symbols like <, v, t and u are multi-set operators.
During the symbolic execution, the abstract program state at
each program point will be a disjunction of σ’s, denoted by
∆. An abstract state ∆ can be normalised to the Φ form [17].
The rules to obtain dual specifications are given in Fig. 3.

In our work we make use of the separation logic prover
SLEEK [17] to prove whether one formula ∆′ in the combined
abstract domain entails another one ∆: ∆′`∆∗R. R is called the
frame which is useful to support sub-structural reasoning rules



∆2 ` ∆1

!r ·∆1 `!r ·∆2

∆1 ` ∆2

?r ·∆1 `?r ·∆2

e1 ` e2
rest1 ` rest2

e1; rest1 ` e2; rest2

S1 ` S2

C(c, S1) ` C(c, S2)

Fig. 4: Entailment rules for session logic.

of separation logic. We extend the SLEEK rules to support
entailment over the session logic formulae (see Fig. 4). The
subsumption of the session formulae which correspond to
send operations is contravariant while the subsumption of
the session formulae corresponding to receiving operations is
covariant.

We also need to be able to check the compatibility of two
session logic specifications. The rules are given in Fig. 5.
The session formula corresponding to sending subsumes the
session formula corresponding to receiving. In case of the
disjunctions the sending part can have fewer disjunctions than
the receiving part. This follows naturally from the behaviour
of disjunction during entailment. For simplicity we present the
rules for 3 disjunctions on the receiving part and 2 disjunctions
on the sending part.

IV. VERIFICATION RULES

We formalize our approach on a concurrent imperative
language enhanced with communication primitives shown in
Fig. 6. Our language is an extension of the sequential language
from [17]. A program Prog written in this language consists
of declarations tdecl, which can be data type declarations
datat, predicate definitions spred as well as method decla-
rations meth. The definitions for spred and mspec are given
in Fig. 2. Our language is expression-oriented, and thus the
body of a method (e) is an expression formed by program
constructors. The language allows both call-by-value and call-
by-reference method parameters. These parameters allow each
iterative loop to be directly converted to an equivalent tail-
recursive method, where mutations on parameters are made
visible to the caller via pass-by-reference. This technique of
translating away iterative loops is standard and is helpful in
further minimising our core language. The language allows
the creation of parallel processes by using the operator ||. The
processes can communicate through channels. A channel is
created by new Chan() but cannot be used until is has been
opened. Each channel is given an alias that can be freely
passed. There are two possible kinds of channels, monolithic
vs double-ended. Monolithic channel allow an alias to used by
multiple parties. Double-ended channel splits a channel into
two ends that are to be later used by two parties. Our language
uses the more general monolithic channels, but our reasoning
system can support either model by simply using a different set
of specifications for double-ended channels. We use the same
verification rules as in HIP/SLEEK , but for the processes and
the channel operations we provide specifications in term of
pre and post-conditions.

Prog ::= tdecl∗ meth∗ tdecl ::= datat | spred
datat ::= data c { (t v)∗ }
t ::= c | prim | Chan | dyn prim ::= int | bool | void
meth ::= t mn (ref (t v)∗; (t x)∗) mspec {e}
e ::= null | kprim | v | v.f | v := e | v1.f := v2 | e1; e2

| if (v) e1 else e2| t v; e | mn(v∗;x∗)
| new c(v∗) | new Chan() | e1||e2
| open(c) with spred | close(c) | send(c, v) | receive(c)

Fig. 6: A Concurrent Imperative Language with Sessions.

A channel can be opened by open with some channel
specification S. After opening we have two aliases of the
same channel, one having the specification S and the other
one having the complimentary specification ∼S as follows:

void open(Chan c) with S
requires emp
ensures C(c, S) ∗ C(c,∼S)

A channel can be closed (or destroyed) only when both
aliases are available and both have consumed their specifica-
tions, as follows:

void close(Chan c)
requires C(c, emp) ∗ C(c, emp)
ensures emp

In general for a correct usage of a channel we must have
the following situation:

open(c) with S1
//C(c, S1) ∗ C(c,∼S1)
//splitting into C(c, S1) || C(c,∼S1)
Process1(c) || Process2(c)
//both processes consume their channels
//C(c, emp) ∗ C(c, emp)
close(c)

In contrast to session types, we need only rely on two
communication operations over a channel: send and receive.
The specifications of the operations are given below. Note
that res is a reserved word denoting the result returned by
receive while L(x) is a session logical formula about x.

t receive(Chan c)
requires C(c, ?r:t · L(r); rest)
ensures L(res) ∗ C(c, rest)

void send(Chan c, t x)
requires C(c, !x:t · L(x); rest) ∗ L(x)
ensures C(c, rest)

In a 2-party session, one channel is typically sufficient
for communication between the two parties. Let us denote
the two parties by two processes P(c) and Q(c), where c is
the communication channel. Apart from the communication
channel specification we can also have a communication
specification for each party, P sp and Q sp. In general, the
specifications of the processes can be written as follows:

t P(Chan c)
requires C(c, P sp) ∗ Pre1
ensures C(c, R1) ∗ Post1

t Q(Chan c)
requires C(c, Q sp) ∗ Pre2
ensures C(c, R2) ∗ Post2



compatible(!r ·∆1;P1, ?r ·∆′1;Q1)
compatible(!r ·∆2;P2, ?r ·∆′2;Q2)

disjoint((?r ·∆′1;Q1), (?r ·∆′2;Q2), (?r ·∆′3;Q3)))

comp aux(((!r ·∆1;P1) ∨ (!r ·∆2;P2)), ((?r ·∆′1;Q1) ∨ (?r ·∆′2;Q2) ∨ (?r ·∆′3;Q3)))

∆1 ` ∆2

comp aux(!r ·∆1, ?r ·∆2)

comp aux(P2, P1)

comp aux(P1, P2)

comp aux(h1, h2) compE(rest1, rest2)

compE(h1; rest1, h2; rest2)

compE(L,R) ∨ compL(L,R) ∨ compR(L,R)

compatible(L,R)

compE(L,R) ∨ compL(L,R)

compL(?r ·∆;L,R)

compE(L,R) ∨ compR(L,R)

compR(L, ?r ·∆;R)

Fig. 5: Session Specifications Compatibility rules.

Operation close must ensure that the communication has
been completed and it is empty. In the following example
close fails since the communication is not empty. The ex-
ample uses a recursive session specification S2.

S2 ≡ !String; S2

open(c) with S2;
//C(c, S2) ∗ C(c,∼S2)
//C(c, S2) //C(c,∼S2)
for(i = 1 to 5) for(i = 1 to 10)
send(c, i); int x = receive(c);

//C(c, S2) ∗ C(c,∼S2)
close(c);//FAILS!

The channel can be dynamically typed. Dynamic types
in our langauge are denoted by Dyn. For instance the type
signature of send and receive are essentially dynamically
typed:

void send(Chan c, Dyn val){...}
Dyn receive(Chan c){...}

send(c, 3); send(c, “...”);
int r = (int) receive(c);
String r = (String) receive(c);

Our automated verification rules help guarantee communica-
tion safety via type-safe casting. We can support dynamic type
values by using a specialized switch construct, as follows:

Dyn t = receive(c);
switch t with {
v1 : int → ...
v2 : String → ...
}

Alternatively, we may also support it via type testing with
conditional constructs, as follows:

Dyn t = receive(c)
if (type(t) = int) {v1 = (int)t; ...}
else if (type(t) = String) {v2 = (String)t; ...}
else {assert false;}

Using dynamic testing of types a recursive channel specifi-
cation can be written as:

S3 ≡ !Object; (S3 ∨ !0)

However, using only type-safe casting without run-time type
testing, our channel specification would have to be written as
follows where each disjunct starts with the same type:

S4 ≡ !Object; (!1; S4 ∨ !0)

V. HIGHER-ORDER SESSION LOGIC

Delegation is one of the most important distinctions be-
tween session types and other communication calculus based
methods. Without the enforcement of delegation we cannot
speak about session types verification. To attest our theorie’s
correctness we consider the following example, taken from
[10]. From global viewpoint the Buyer sends a product iden-
tifier to the Seller. The Seller provides the Buyer a price for
the requested product. The Buyer can decide, according to
their internal rules, to accept the product or not. If the Buyer
accepts the product then the Seller establishes a connection
with the Shipper in order to arrange the transportation of
the product. The Seller provides the necessary information
about the product and also delegates the Buyer connection
to the Shipper. Finally, the Shipper and the Buyer establishes
the final detail related to the transportation. As part of this
process the Buyer provides to the Seller her address, and the
Seller provides a delivery date to the Buyer. Before starting the
development of such a system, it is recommended to clearly
specify the collaboration between the entities with a sequence
diagram as it is in Fig. 7. This diagram can be considered as a
graphical specification of our session logic. The transformation
can be done automatically.

The projection of this problem’s protocols is given below:

buy sp ≡ !int; ?r:Double · sprice(r);
((!1; !Addr; ?Date) ∨ !0)

ship sp ≡ (?1; ?Prod; ?r:Chan · C(r, ?Addr; !Date);
!r:Chan · C(r, emp)) ∨ ?0

where sprice is defined, as below:

sprice(root) ≡ ∃i, f : root7→Double〈i, f〉
∧i ≥ 0 ∧ f ≥ 0 ∧ i + f > 0

The first specification of the protocol buy sp describes the
communication from the Buyer’s point of view. The protocol
does not take into consideration that it could be delegated
toward the Shipper. From Buyer point of view the delegation
is transparent, but for the Seller the delegation is explicit and
thus included in the protocol specification ship sp. This spec-
ification formulates the protocol from the Shipper perspective
and highlights the process of the delegation. The delegation
is expected to happen after receiving the Buyer’s decision
and the product details. The Buyer’s choice is transmitted



Fig. 7: Sequence diagram of shipping delegation

to the Shipper to help it to consume the protocol. This
process is required because of the early synchronization of
the processes. If the latter synchronization of the processes
would be permitted, allowing the parts to make connections
on demand, then the deadlock freedom of the communication
process would be hardly provable.

From delegation perspective the specification is precise and
highlights the state of the transmitted channel, which must be
insured by the sender and can be assumed by the receiver.

The program codes which can implement the above protocol
are given below:

open(cb) with buy sp; shipper(Chan c)
open(cs) with ship sp; requires C(c, ship sp)
int prod = getProdID(); ensures C(c, emp)
Addr a = getAddr(); {int usr opt = receive(c);
Double budget = getBudget(); if (usr opt == 1) {

Prod p = receive(c);
(buyer(cb, prod, budget, a) || Chan cd = receive(c);
seller(cb, cs) || shipper(cs)); Addr a = receive(cd);

Date sd = cShip(a, p);
close(cb); send(cd, sd);
close(cs); send(c, cd);

} else if(usr opt == 0) {
} else assert false; }

seller(Chan cb, Chan cs) buyer(Chan c, int id,
requires C(cb,∼buy sp) Double budget, Addr a)

∗ C(cs,∼ship sp) requires C(c, buy sp)
ensures C(cb, emp) ∗ C(cs, emp) ensures C(c, emp)
{int id = receive(cb); {send(c, id);
send(cb, getPrice(id)); Double price = receive(c);
int usr opt = receive(cb); if(price <= budget) {
if(usr opt == 1) { send(c, 1);
send(cs, 1); send(c, a);
Prod p = getProd(id); Date sd = receive(c);
send(cs, p); } else send(c, 0); }
send(cs, cb);
cb = receive(cs);
} else if(usr opt == 0)
send(cs, 0);

else assert false; }

Considering the previous code as a correct implementation
of our example then the verification consists of proving that
the involved entities are playing their role according to the
previously mentioned specifications. The most complex role of
our protocol, which results in a complex implementation (see
seller function) is the seller’s role. The verification process
consists of applying out the session logic specifications and
the entailment rules. Some of the essential symbolic states
of seller’s function verification can be found in the following
annotated source code:

// C(cb, ?int; !r:Double · sprice(r); ((?1; ?Addr; !Date) ∨ ?0)) ∗
// C(cs, (!1; !Prod; !r:Chan · C(r, ?Addr; !Date); ?r:Chan ·
// C(r, emp)) ∨ !0)

1 int id = receive(cb);
// C(cb, !r:Double · sprice(r); ((?1; ?Addr; !Date) ∨ ?0)) ∗
// C(cs, (!1; !Prod; !r:Chan · C(r, ?Addr; !Date); ?r:Chan ·
// C(r, emp)) ∨ !0)

2 send(cb, getPrice(id));

3 int usr opt = receive(cb);

4 if (usr opt == 1) {
// C(cb, ?Addr; !Date) ∗ C(cs, (!1; !Prod; !r:Chan ·
// C(r, ?Addr; !Date); ?r:Chan · C(r, emp)) ∨ !0)

5 send(cs, 1);

6 Prod p = getProd(id);

7 send(cs, p);
// C(cb, ?Addr; !Date) ∗ C(cs, !r:Chan · C(r, ?Addr;
// !Date); ?r:Chan · C(r, emp)) ∗ p 7→Prod〈 〉
8 send(cs, cb);
// C(cs, ?r:Chan · C(r, emp)) ∗ p7→Prod〈 〉
9 cb = receive(cs);
// C(cs, emp) ∗ C(cb, emp) ∗ p7→Prod〈 〉
10 } else if (usr opt == 0) {
// C(cb, emp) ∗ C(cs, (!1; !Prod; !r:Chan · C(r, ?Addr;
// !Date); ?r:Chan · C(r, emp)) ∨ !0)

11 send(cs, 0);
// C(cb, emp) ∗ C(cs, emp)

12 } else assert false;

Given the forward verification style of our approach, the
symbolic execution of the seller method starts by assuming
its precondition, namely C(cb,∼buy sp) ∗ C(cs,∼ship sp),
where ∼buy sp and ∼ship sp are computed using the
duality rules from Fig. 3. Next, after the symbolic execution
of line 1, the program’s symbolic state reflects the receiving
of an int value over channel cb by removing ?int from the
specification of cb. Formally, if the precondition of receive
holds, the next symbolic state comprises the frame resulted
after proving the precondition along with the method’s post-
condition. The same rationale applies for lines 2-3 and 5-8,
with the remark that line 3 is represented as a choice in the
specification of cb: ((?1; ...) ∨ ?0), while line 8 denotes
a delegation. It is important to note that our approach is
composable, e.g. the verification of the send method follows
the same rule whether it is used for delegation or merely for
sending an int value over a specified channel.

VI. FULL EXPRESSIVITY OF SEPARATION LOGIC

We demonstrate the expressiveness of our approach by using
a very simple business protocol example between Buyer and
Seller. The Buyer recursively sends a read-only list of product
identifiers, while the Seller responds with a price for each



product identifier. The sequence diagram of the problem can
be found in Fig. 8

Fig. 8: Sequence diagram for items purchasing

Given the following data node declaration:

data node{int id; node next; }

a separation logic based specification language conveniently
provides support in writing the necessary heap predicates, such
as the linked list definition below, which could then be used
by the buyer to send the list of product identifiers:

pred ll(root) ≡ root = null ∨
∃ q · root7→node〈 , q〉 ∗ ll(q)

The above predicate can be used in disjunctions over the
protocol. However, in order to avoid ambiguous protocols we
must impose disjoint conditions. For instance, the following
channel is ambiguous:

?x:node · ll(x) ∨ ?x:node · x = null

while the following is unambiguous:

(?x:node · ll(x) ∧ x 6= null) ∨ (?x:node · x = null)

Though its condition contains ghost values, the receiver side
can still exploit it.

The communication specification between buyer and seller
can be written using an inductive definition, as below:

buy lsp ≡ !p :node · p = null; ∨
!p :node · p7→node〈 , 〉;
?price :Double · sprice(price); buy lsp

The protocol specification asserts that each outward trans-
mission of a not null node must be followed by an input
of type Double. In other words, the party which obeys the
buy lsp protocol, the Buyer in this case, first transmits an
element whose details are stored in the node structure, and
then expects a response from the Seller in the form of a price
for the considered element. The communication terminates
once the Buyer has received a null reference from the seller,
which marks the end of the list (the list which stores the ele-
ments of interest). The communication termination condition
is emphasized in the first disjunct of the protocol specification:
where p must be null, as opposed to the case where the list
still contains elements signaled by p 7→node〈 , 〉 and thus the
specification continues to iterate over buy lsp.

The program code implementing the entry point of the
above protocol is given below:

...
open(c) with buy lsp;
(buyer(c) || seller(c));
close(c);

The code for the two processes running in parallel, buyer
and seller, respectively, is as follows:

void buyer(Chan c)
requires C(c, buy lsp)
ensures C(c, emp)
{ node it = getItems();
recvPrices(c, it);}

void seller(Chan c)
requires C(c,∼buy lsp)
ensures C(c, emp)
{ node it = receive(c);
if(it! = null){
Double p = price(it.id);
send(c, p);
freeNode(it);
seller(c);}

}

void recvPrices(Chan c, node it)
requires C(c, buy lsp) ∗ ll(it)
ensures C(c, emp)
{ if(it! = null){

node nxt = it.next;
int id = it.id;
send(c, it);
Double price = receive(c);
procPrice(id, price);
recvPrices(c, nxt);
} else {
send(c, it);}

}

Consistent with our previous examples, the verification
of buyer starts by assuming its precondition, namely
C(c, buy lsp). The abstract states following the symbolic
execution of buyer are highlighted below:

// C(c, buy lsp)
node it = getItems();
// C(c, buy lsp) ∗ ll(it)
recvPrices(c, it);
// C(c, emp)

The list used to store the products is transmitted to the Seller
on a node by node basis in the recvPrices method. The
fact that the communication uses node transmission serves a
double scope: for sharing product information in a compound
manner and for ensuring that the Buyer’s loop and the Seller’s
loop are synchronized. As opposed to other session types
enforcement techniques, the synchronization of the loops can
be done via the transmitted data, without the need of a
different synchronization package. Generally, the session type
techniques require a flag transmission at each iteration in order
to ensure that the loops have same iterations. In contrast, our
work allows the verification of a more optimal implementation.
More precisely, in our work the communication entities rely
on the transmitted data, offering support for a more expressive
and precise specification courtesy of [17] and the benefits of
separation logic.

By using separation logic to specify and verify this example
it is ensured that if the verification succeeds, the communica-
tion terminates and respects its protocol. This guarantee is
justified through the usage of separating conjunction, ∗, in the
definition of ll which implicitly states that each element in the
list resides in disjoint heap. In other words, it guarantees that
iterating over a linked list such as ll doesn’t produce non-
productive loops. For brevity of the presentation, we stress



on the assumption that the data structures are immutable
(i.e. the lists are not updated during the communication), the
physical communication channels suffer no loss of transmitted
information and that the seller is able to provide a price for
each product.

We next present a detailed view of the abstract program
states for the symbolic execution of recvPrices:

1void recvPrices(Chan c, node it)

2 requires C(c, buy lsp) ∗ ll(it)

3 ensures C(c, emp)

4{
// C(c, buy lsp) ∗ ll(it)

5 if(it! = null){
// C(c, buy lsp) ∗ ll(it) ∧ it 6= null
6 node nxt = it.next;
// C(c, buy lsp)
// ∗ it7→node〈p0, q〉 ∗ ll(q) ∧ it 6= null ∧ nxt = q

7 int id = it.id;
// C(c, buy lsp)
// ∗ it7→node〈p0, q〉 ∗ ll(q) ∧ it 6= null ∧ nxt = q ∧ id = p0
// −−−−−−−−−−−−−−−−−−−−−−−−−−−
// C(c, !p :node · p = null∨!p :node · p7→node〈 , 〉;
// ?price :Double · sprice(price); buy lsp)
// ∗ it7→node〈p0, q〉 ∗ ll(q) ∧ it 6= null ∧ nxt = q ∧ id = p0
8 send(c, it);
// C(c, ?price :Double · sprice(price); buy lsp)
// ∗ ll(q) ∧ it 6= null ∧ nxt = q ∧ id = p0
9 Double price = receive(c);
// C(c, buy lsp) ∗ sprice(price)
// ∗ ll(q) ∧ it 6= null ∧ nxt = q ∧ id = p0
10 procPrice(id, price);
// C(c, buy lsp) ∗ sprice(price)
// ∗ ll(q) ∧ it 6= null ∧ nxt = q ∧ id = p0
11 recvPrices(c, nxt);
// C(c, emp) ∗ sprice(price) ∧ it 6= null ∧ nxt = q ∧ id = p0
12 } else {
// C(c, buy lsp) ∧ it = null
// −−−−−−−−−−−−
// C(c, !p :node · p = null∨!p :node · p7→node〈 , 〉;
// ?price :Double · sprice(price); buy lsp) ∧ it = null
13 send(c, it);
// C(c, emp) ∧ it = null
14 }
// C(c, emp) ∧ it 6= null ∨ C(c, emp) ∧ it = null
// −−−−−−−−−−−−−−−−−−−−
// C(c, emp)

15}

The verification of the recvPrices method follows closely
the same rationale as the examples detailed in the previous
sections. Special attention, however, is given to the verification
of the send call at line 8, which emphasizes the copyless
character of the underlying communication. More precisely,
send consumes the node pointed by it from the Buyer’s
abstract state (while its receiving counterpart at the Seller’s
side inherits the permission to access the transmitted node).
Moreover, the Buyer’s program state correctly reflects the
progression of the communication protocol by consuming the
output !p :node from the session specification. It is impor-
tant to note that our entailment technique safely prunes the
contradicting disjuncts while unfolding the specialized session
predicate. The contradiction usually refers to the conflict
between the conditions of the session choice and the program’s
state guard. Specifically, our calculus [18] prunes the ses-
sion disjunct which refers to the communication termination,

!p :node · p = null, provided that the calling context is
guarded by it 6= null, the recursion condition.

VII. DEADLOCK DETECTION

In this section we discuss how our approach detects dead-
locks during two-party channel asynchronous communication.
Our deadlock detection is based on the assumption that send
method is non-blocking, while receive may be blocked.

Consider a single channel communication between two
parties. Let us analyse the possible situations that may lead
to a deadlock. After opening, each channel has two aliases:
one with the given specification Z and the other one with its
dual specification ∼Z. The two aliases of a single channel are
used by two parties of the channel. In the main procedure, they
are passed to the two parties (processes) that are involved in
communications. Intra-channel deadlock may occur when the
2-parties of the channel are not synchronized with an excess of
blocking receive methods, before send methods. That means
both parties have different consumption of the resource C(c, Z)
and C(c,∼Z). In order to detect the deadlock we have to do a
synchronization check when the parties’ processes are merged
(or joined) together. The check consists of a compatibility
verification of the remaining resources from the same channel,
say C(c, Z1) and C(c, Z2). The rules are given in Fig. 5.

Let us consider a simple example where Z =?String.
The example shows the situation when at the merging point
one party has the session specification C(c, emp) and the
other has the specification C(c, !String). These two channel
specifications are incompatible, with an outstanding send,
leading to an intra-channel deadlock from the blocking P(c)
method.

open(c) with ?String
// C(c, ?String) // C(c, !String)

P(c) skip
// C(c, emp) ∗ C(c, !String)
//synchronization check FAILS
Q(c)

Let us now swap the positions of the P(c) and Q(c) meth-
ods, such that non-blocking send method in Q is executed
first. In this case, our channel specifications C(c, ?String)
and C(c, emp) remains compatible since it has an excess of
receive operation that could always be invoked at a later
time. The compatibility check succeeds on its merge point,
followed by P(c) method call which would then execute
its receive command. There is therefore no intra-channel
deadlock here.

open(c) with ?String
// C(c, !String) // C(c, ?String)

Q(c) skip
// C(c, emp) ∗ C(c, ?String)
//synchronization OK
P(c)
// C(c, emp) ∗ C(c, emp)

A more general scenario is outlined next for some arbitrary
P(c) and Q(c) method. We simply need to apply compatibility
checking at the merge point to check if intra-channel deadlock
has already occurred at the point.



open(c) with Z
// C(c, Z) // C(c,∼Z)

P(c) Q(c)
// C(c, K1) ∗ C(c, K2)
//synchronization check

VIII. RELATED WORK

Session types have been studied in many contexts, including
functional languages (Haskell, F#, multi-threaded ML), Java,
mobile processes, higher-order processes, operating systems
and web services [9], [19], [10], [20]. Most of these works
aim to prove the correctness of the communications and
only partially address the problem of deadlock detection. We
started our work by analyzing session types for object-oriented
languages [10] which proposes an incomplete solution for
deadlock detection. There are several works [21], [22], [23],
[24], [25], [26] which enforce the session types specification
by dynamic verification. These works address the dynamic
verification of the protocol specifications but their verification
is not exhaustive and can not be applied on an early stage of
development.

The relation between the π-calculus and separation logic
is studied in [27] and [28], but their work gives a treatment
of the π-calculus based on the semantic theory of separation
logic, without concentrating on protocol verification. The same
idea was also studied in relation to Hoare logic in [29]. From
the perspective of other protocol specification languages, there
is a work [30] which tries to encode the CSP into Hoare
Logic, but they have encoded only the send and receive com-
mands without the branching. [14] suggests a logic to extend
multiparty session specifications, by enriching the assertion
language studied in [13] with capability to refer to virtual
states local to each network principal. Lately, Villard et al. [15]
have been developing a logic relying on state-based global
contracts, while our more general logic of session is built as
an extension of separation logic with disjunction to support
communication choices.

IX. CONCLUSION

We propose a novel session logic with disjunctions to
specify and verify the implementation of the communication
protocols. Our current logic is based on only two-party channel
sessions, but it is capable to naturally handle delegation
through the use of higher-order channels. Due to our use of
disjunctions to model both internal and external choices, we
can use only conditional statements to support such choices, as
opposed to specialized switch constructs in prior proposals. As
our proposal is based on an extension of separation logic, we
can support heap-manipulating program and copyless message
passing. Our session logic is being implemented on top of
the HIP/SLEEK system [17]. In future we plan to extend our
session logic to multi-party and multi-channel specifications.

ACKNOWLEDGMENTS

We like to thank Prof. Wei-Ngan Chin for his invaluable
advices and fruitful discussions. We also like to thank Dr.
Shengchao Qin for fruitful discussions. This work is supported
by Siemens grant no. 7472/3202246933 and by MoE Tier-1
NUS research grant R-252-000-525-112.

REFERENCES

[1] P. A. Abdulla, J. Deneux, G. Stålmarck, H. Ågren, and O. Åkerlund,
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APPENDIX

The specifications of the auxiliary functions from sections
VI and V are given below:

node getItems()
requires emp
ensures ll(ret)

void freeNode(node it)
requires it7→node〈 , 〉
ensures emp ∧ it = null

void procPrice(int id,
Double price)

requires sprice(price)
ensures emp

Fig. 9: Auxiliary functions from section VI

The previously used data structures are defined below:

data Double{
int i;//integer part
int f;//fractional part

}

data String{
int strid;

}

data Prod{
int id;

}

data Date{
int year;
int month;
int month;

}

data Addr{
int nr;
String city;

}

Fig. 10: Data structures

int getProdID()
requires emp
ensures res > 0

Addr getAddr()
requires emp
ensures res7→Addr〈 , 〉

Prod getProd(int id)
requires id > 0
ensures res7→Prod〈id〉

Double getBudget()
requires emp
ensures res7→Double〈i, f〉

∧ ≥ ∧f ≥ 0

Date cShip(Addr a, Prod p)
requires a7→Addr〈 , 〉

∧ p 7→Prod〈id〉 ∧ id > 0
ensures res7→Date〈 , , 〉

Double getPrice(int id)
requires id > 0
ensures sprice(res)

Fig. 11: Auxiliary functions from section V
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