
AUTOMATED VERIFICATION FOR
RACE-FREE CHANNELS WITH
IMPLICIT AND EXPLICIT
SYNCHRONIZATION

Andreea Costea, Wei-Ngan Chin, Florin Craciun, Shengchao Qin

March 2017

CONTEXT – COMMUNICATION PROTOCOLS

Possible problems:

• deadlock

• unexpected communication

• transmission race

Buyer Seller
productID : String

price>0 : int
Cond: prince <=
expectedPrice

Shipper

a b

1: int

productID : int
a: Channel

addr: Addr
delivery: Date

a: Channel

0: int

STATE OF THE ART

Behavioural types:
• Generic types1: types and type environments as abstract processes, and then guarantee

deadlock-freedom of process by checking the corresponding type environment.
• Behavioral separation2: extends separation logics and substructural types to higher order

imperative concurrent programs in order to discipline interference
• Session types3,4: Global and local types to describe communication and ensure deadlock

freedom and race-freedom in the context of message passing

1 IGARASHI , A. and KOBAYASHI , N., “A Generic Type System for the Pi-Calculus,” Theoretical Computer Science, vol. 311, no. 1, pp. 121 – 163,
2004.

2 CAIRES , L. and SECO , J. C., “The Type Discipline of Behavioral Separation,” in POPL 2013.

3 HONDA , K., VASCONCELOS , V. T., and KUBO , M., “Language primitives and type discipline for structured communication-based programming,” in
ESOP ’98.

4 HONDA , K., YOSHIDA , N., and CARBONE , M., “Multiparty Asynchronous Session Types,” POPL 2008.

STATE OF THE ART (CONT.)

Logics with channel primitives:
• CSL for copyless message passing: an extension of separation for bidirectional communication

between two players using global contracts
• CSL for pipelined parallelization6: an extension of separation logic which supports multiple

players communicating through a single shared channel
• Chalice8 with support for message passing7: modular verification to prevent deadlocks of

programs which mix message passing and locking.

5 V ILLARD , J., L OZES , É., and C ALCAGNO , C., “Proving copyless message passing,” in APLAS 2009 , pp. 194–209, Springer.

6 BELL , C. J., APPEL , A. W., and WALKER , D., “Concurrent Separation Logic for Pipelined Parallelization,” in SAS 2010, pp. 151–166, Springer.

7 LEINO , K. R. M., MÜLLER , P., and SMANS , J., “Deadlock-Free Channels and Locks,” in ESOP 2010, pp. 407–426, Springer.

8 LEINO , K. R. M. and MÜLLER , P., “A Basis for Verifying Multi-Threaded Programs,” in ESOP 2009 pp. 378–393, Springer.

AUTOMATED VERIFICATION FOR
RACE-FREE CHANNELS WITH
IMPLICIT AND EXPLICIT
SYNCHRONIZATION

AUTOMATED VERIFICATION FOR
RACE-FREE CHANNELS WITH
IMPLICIT AND EXPLICIT
SYNCHRONIZATION

EXAMPLE 1

 A B: c(“Yes”) ; A C: c(“No”)

Communication assumptions:
shared FIFO message queues

unbounded queue
asynch communicationWho reads “Yes”?

Race on reading from c!
Current approaches declare this protocol as

UNSAFE

A
…
send(c, “Yes”);
send(c, “No”);

B
…
a = receive(c);

C
…
a = receive(c);

AUTOMATED VERIFICATION FOR
RACE-FREE CHANNELS WITH
IMPLICIT AND EXPLICIT
SYNCHRONIZATION

EXAMPLE 1

 A B: c(“Yes”) ; A C: c(“No”)

Communication assumptions:
shared FIFO message queues

unbounded queue
asynch communicationIntroduce a proof obligation on event ordering to prove

that
B happens-before C

A
…
send(c, “Yes”);
send(c, “No”);

B
…
a = receive(c);
notifyAll(w);

C
…

wait(w);
a = receive(c);

AUTOMATED VERIFICATION FOR
RACE-FREE CHANNELS WITH
IMPLICIT AND EXPLICIT
SYNCHRONIZATION

EXAMPLE 2

 A B: c(“Yes”) ; C B: c(“No”)

Race on writing to

c!
Introduce a proof obligation on event ordering to prove

that
A happens-before C

GOAL

 S1 R1: c(…) ; …; S2 R2: c(…)

To ensure race-freedom on c, prove that:

S1 happens-before S2

and

R1 happens-before R2

MERCURIUS: A LOGIC FOR PROTOCOL
SPECIFICATION

WELL-FORMEDNESS (*)

WELL-FORMEDNESS (\/)

OVERVIEW OF OUR APPROACH

Given G:
Collect ordering assumptions & proof obligations

Refine G

Project G onto each communicating party (G#P)

Project G#P onto each channel (G#P#c)

Automatic verification

OVERVIEW OF OUR APPROACH

Collect ordering assumptions & proof obligations

Refine G

Project G onto each communicating party (G#P)

Project G#P onto each channel (G#P#c)

Automatic verification

ORDERING ASSUMPTIONS

Communicates-before
for
 a transmission i

Happens-before for any two
adjacent events on the same party
P:

Local events Global orderings

RACE-FREE ASSERTIONS

Proof-obligation to check race-freedom of c:

ORDERINGS CONSTRAINT SYSTEM

Constraint propagation lemmas:

COLLECTION – BUILDING AND MERGING
SUMMARIES
Summary := Bborder x Fborder

Border := Mevents x Mtrans
Mevents := Role Events
Mtrans := Chan Trans

 G = G1 ;
G2

 B1 F1 B2
F2
 B = B1 • B2 F
= F2 • F1

OVERVIEW OF OUR APPROACH

Collect ordering assumptions & proof obligations

Project G onto each communicating party (G#P)

Project G#P onto each channel (G#P#c)

Automatic verification

Refine G

EXAMPLE 3

OVERVIEW OF OUR APPROACH

Collect ordering assumptions & proof obligations

Project G#P onto each channel (G#P#c)

Automatic verification

Refine G

Project G onto each communicating party (G#P)

GLOBAL SPEC PER PARTY (LANGUAGE)

GLOBAL SPEC PER PARTY (PROJECTION RULES)

EXAMPLE 3: PER PARTY SPEC

OVERVIEW OF OUR APPROACH

Collect ordering assumptions & proof obligations

Automatic verification

Refine G

Project G onto each communicating party (G#P)

Project G#P onto each channel (G#P#c)

PER PARTY PER CHANNEL (LANGUAGE)

PER PARTY PER CHANNEL (PROJECTION RULES)

EXAMPLE 3: PER CHANNEL SPEC

EXAMPLE 3: PER CHANNEL SPEC

OVERVIEW OF OUR APPROACH

Collect ordering assumptions & proof obligations

Refine G

Project G onto each communicating party (G#P)

Project G#P onto each channel (G#P#c)

Automatic verification

COMMUNICATION PRIMITIVES

EXAMPLE 3 - VERIFICATION

“Release” lemma:

“Join-emp” lemma:

FINAL REMARKS

Race-freedom via implicit & explicit synchronization
Ordering constraint system
Expressive session logic, which goes beyond types

More in the technical report
• Well-formedness of * and ∨
• Explicit synchronization specifications
• Recursion
• Full constraint system
• Entailment rules

WAIT-NOTIFYALL PRIMITIVES

Deadlock-check:

MERCURIUS: SPECIFICATION LANGUAGE

