
ProofRover:
Assured Automatic Programming via LLMs

Martin Mirchev Andreea Costea Abhishek Kr Singh Abhik Roychoudhury

2

!

3

Code Test

Specification

!

4

Code Test

Specification

APR

!

5

Code Test

Specification

Formal  
Verification

!

6

Code Test

Specification

Specification  
Inference

!

7

Code Test

Specification

8

Code Test

Specification

? ??

?
Align all the artefacts and in the process discover the user intent.

ProofRover:
Assured Automatic Programming via LLMs

Scope: Dafny
Verification-aware language
Syntactically close to Java, C#
Transpiles to many languages

10

[FSE 2024] Md Rakib Hossain Misu, Cristina V. Lopes, Iris Ma, and James Noble.
Towards AI-Assisted Synthesis of Verified Dafny Methods

LLM can generate specs [FSE 2024]
• 0% to 64% verified code on 178 problems.

Scope: Dafny

11

12

Multiple sources of intent:
• User Intent: Natural Language
• Code, Test, Spec

Ambiguous

Precise

How do we reach conformance among these artifacts?

Observation 2: Artifacts almost align.

1. Discover the common intent.
2. Repair the inconsistencies.
3. Align specification with user intent.

Observation 1: Artifacts may contradict each other.

A. Co-evolution

B. Intent discovery

13

A. Program-Proof Co-evolution

14

A. Program-Proof Co-evolution

 ΦP ⊆ ? ΦS

1. Logical Representation

Logical representation of the intent captured in the program and specification.

15

A. Program-Proof Co-evolution

 ϕP ⊆ ϕS
 ϕP ⊆ ϕS

 ϕP ⊈ ϕS
 ϕP ⊈ ϕS

 ΦP ⊆ ? ΦS

1. Logical Representation 2. Pairs of Facts

3a. Common Intent 3b. Inconsistencies

Well-Formed.  
Cond.

Decompose the two sources of intents into granular facts.

16

A. Program-Proof Co-evolution

 ϕP ⊆ ϕS
 ϕP ⊆ ϕS

 ϕP ⊈ ϕS
 ϕP ⊈ ϕS

 ΦP ⊆ ? ΦS

1. Logical Representation 2. Pairs of Facts

3a. Common Intent 3b. Inconsistencies

Well-Formed.  
Cond.

4a. Hard Intent 4b. Soft Intent

Maintain the hard intent and minimise the
number of soft intent repairsDistinguish between hard intent and soft intent.  

Soft intent might still contain useful information. Don’t discard it completely

17

A. Program-Proof Co-evolution

 ϕP ⊆ ϕS
 ϕP ⊆ ϕS

 ϕP ⊈ ϕS
 ϕP ⊈ ϕS

 ΦP ⊆ ? ΦS

1. Logical Representation 2. Pairs of Facts

3a. Common Intent 3b. Inconsistencies

Well-Formed.  
Cond.

4a. Hard Intent 4b. Soft Intent

Program

 ϕP ⊆ ϕS
 ϕP ⊆ ϕS

 ϕP ⊆ ϕS

 ϕP ⊆ ϕS

5. Patches

Spec

Maintain the hard intent and minimise the
number of soft intent repairsGenerate Program and Spec patches that  

would fix the Program-Spec conformance.

18

Code Test

Specification

?

?

We reached Program-Spec conformance. What about User Intent?

19

B. Align Spec with User Intent

Interact with user via tests.
Insight: treat testing as a verification problem …

User 
anon.

 ϕP ⊆ ϕS
 ϕP ⊆ ϕS

 ϕP ⊈ ϕS
 ϕP ⊈ ϕS

 ΦP ⊆ ? ΦS

1. Logical Representation 2. Pairs of Facts

3a. Common Intent 3b. Inconsistencies

4a. Hard Intent 4b. Soft IntentProgram
 ϕP ⊆ ϕS

 ϕP ⊆ ϕS

 ϕP ⊆ ϕS

 ϕP ⊆ ϕS

5. Patches

Spec

Maintain the hard intent and minimise the
number of soft intent repairs

Well-Formed.  
Cond.

… and launch another program-proof co-evolution campaign.

21

Code Test

Specification

?

?

22

Code Test

Specification

23

To sum up:

Evaluation and
Results

MBPP-DFY [FSE 2024]:

24

Setup:
- Fully static approach

- GPT-4o, Sonnet-3.5

- Temperature: 0.3, 0.7, 1.0

- Baselines:

- Naive Repair - with verification failures info

- Chain-of-Thought - same prompt as ProofRover, bar Hard/Soft intent

- Metrics: conformance, quality of specs

For non-conforming code, ProofRover aligns about 73% and 28% more
programs with specifications than the Naive Repair baseline and the Chain-
of-Thought repair, resp.

?
?

For verified code, ProofRover performs similar to the Naive Repair and the
Chain-of-Thought repair.

Without tests, ProofRover increases specification completeness (behaviour coverage) by up to 10%. 
 
Adding tests, ProofRover increases specification completeness on average by 60%.

The discovered, unambiguous user intent produces 3x more verified code
than the original intent.

1. Can verification-aware languages scale up?  

Program-Proof Co-evolution

Intent Discovery

?

?

??

Artifacts Alignment

Automated Assurance

Thank you!

2. Patch Validation: Can we use hard/soft intent as  
a means to measure validation?

3. Maintainability: for whom?

27

PS Conformance

28

29

PST Conformance

Completeness

30

31

Assessing the ambiguity of the intent

32

33

Patch samples

Heuristic for selecting soft intent facts as
repair candidates

Generally, we choose the fact that is inconsistent with the most hard intent facts.

If two facts break even, we next choose the one which is inconsistent with the soft intent
facts.

If they further break even, we then choose the strongest among the two if they are in an
implication relation, i.e. A=>B, or pick randomly otherwise.

34

Passification example

35

