
A Session Logic for
Relaxed Communication Protocols

Thesis Defense
6th December 2017

Andreea Costea

Department of Computer Science

Advisor: A/P Wei-Ngan Chin

Design Specify Implement Validate Operate & Maintain

Q1: How to ensure that a protocol is correctly implemented?

(communication
protocols)

(different
dev teams)

“A communication protocol defines the format and the order of messages
exchanged between two or more communicating entities”. [Kurose and Ross]
Example of protocols: payment systems, smart contracts, NFS, Linux boot protocol, FTP, etc

?
Systems development life cycle:

Implementation of Protocols: loosely or tightly coupled

Writing software is error-prone.

Writing communication-centered software even more so!

Memory

Process CMemory

Process A
Memory

Process D

Memory

Process B

Memory

Process A Process B Process C Process D

Q2: How to ensure that implementations are safe?

protocol
(RFC xxxx)

Design Specify Implement Validate Operate & Maintain
(network of
dev teams)
?

3/55

Compatibility of Protocols

Q3: How to ensure that protocols are safely composed?

protocol

AB

protocol
B

protocol

A

Design Specify Implement Validate Operate & Maintain
(communication

protocol)
?

4/55

A Telling Example

Collaborative Client – Server*

Protocol Elements:
- communicating entities (parties): Client A, Client B, Server
- messages: req, resp, collab, ok, quit
- direction and order of transmission
- channel: a, b, s
- conditioned communication: cond

Communication Model:
- asynchronous communication
- FIFO mailbox channels

*Usages: Two Buyers - One Seller Protocol [Honda et al., 2008], Intel CS for WebRTC, Hybrid client-server
for 3D design [Desprat et al. 2015], Collaborative Remote Experimentation [Callaghan et al. 2014], etc.

Client A Client B Server

alt
cond

¬cond

s(req1)

b(resp1)

a(resp1)

b(collab)

s(ok)

s(quit)

s(req2)

b(resp2)

6/55

Buyer B

int price,clb;

…

price = receive(b);

clb = receive(b);

if(cond){

send(s, ok);

send(s, addr);

… = receive(s);

}else{

send(s, quit);

}

Collaborative Client – Server

Buyer A

int price,share;

String book;

…

send(s, book);

price = receive(a);

share = foo(price);

send(b, share);

Seller

int id, val;

…

id = receive(s);

val = goo(id);

send(a,val);

send(b,val);

ans = receive(s);

if (s==ok){

… = receive(s);

send(b,…);

}

Client A Client B Server

alt
cond

¬cond

s(req1)

b(resp1)

a(resp1)

b(collab)

s(ok)

s(quit)

s(req2)

b(resp2)

7/55

Buyer B

int price,clb;

…

price = receive(b);

clb = receive(b);

if(cond){

send(s, ok);

send(s, addr);

… = receive(s);

}else{

send(s, quit);

}

Collaborative Client – Server

Buyer A

int price,share;

String book;

…

send(s, book);

price = receive(a);

share = foo(price);

send(b, share);

Seller

int id, val;

…

id = receive(s);

val = goo(id);

send(a,val);

send(b,val);

ans = receive(s);

if (s==ok){

… = receive(s);

send(b,…);

}
Unsafe type manipulation
Race: non-linear usage channel b

Client A Client B Server

alt
cond

¬cond

s(req1)

b(resp1)

a(resp1)

b(collab)

s(ok)

s(quit)

s(req2)

b(resp2)

8/55

How to Deal with Software Bugs?

Testing

Is it good enough?

“Testing only shows the presence of bugs,
not their absence.”

Edsger W. Dijkstra

HW & SW Mitigation Solutions

P

program’s input
(concrete values) (expected behaviour?)

program’s output

9/55

The Programming Language Approach

Given a notion of computation,
design a notation to express this computation

together with reasoning tools for that notation.

10/55

A Language-Based Approach to Formalizing Protocols

implementation
bug identification

or
proof of correctness

(automatically)

Thesis:
Language support makes it possible:
• to specify communication protocols, and then
• to verify (automatically) that an implementation conforms to the given protocol

in a safe way.

SPECIFY

VERIFY

express formal protocol(manually)
informal protocol

11/55

Outline Of The Talk

1. Related Work

2. Session Logic

A. Specification Language

B. Identify Race Conditions

C. Relaxed Protocols

D. Modular Protocols

3. Communication Verification

4. Conclusion and Future Work

12/55

1. Related Work

2. Session Logic

A. Specification Language

B. Identify Race Conditions

C. Relaxed Protocols

D. Modular Protocols

3. Communication Verification

4. Conclusion and Future Work

13/55

State of the Art (1)

Binary Session Types [HONDA et al. @ESOP’98]

- Subtyping [GAY & HOLE @AI’05]

- Sessions as effects [ORCHARD & YOSHIDA et al. @POPL’16]

- Embedding to Haskell [NEUBAUER & THIEMANN @PADL’04],
multi-threaded ML [VASCONCELOS et al., @TCS’06], F# [Corin et al. @CFS’07], Java [Ciancaglini et al. ECOOP’06], etc

Multiparty Session Types [HONDA et al. @POPL’08]

- Progress – disallow shared channels [BETTINI et al. @CONCUR’08, COPPO et al. @MSCS’16]

- Linearity – shared channels are a must [CAIRES & PFENNING @CONCUR’10, GIUNTI & VASCONCELOS @MSCS’14,
SCALAS et al. @ECOOP’17]

- Adding contracts [BOCCHI et al. @CONCUR’10], synthesize deadlock-free choreographies [CARBONE & MONTENSI
@POPL’13], dynamic multirole [DENIELOU & YOSHIDA @POPL’11], nested sessions [DEMANGEON & HONDA
@CONCUR12], safety for Go programs [YOSHIDA et al @POPL’17]

- Correspondence with linear logic [CAIRES & PFENNING @CONCUR’10, CAIRES et al. @MSCS’12, CARBONE et al.
@CONCUR’15, CARBONE et al. @CONCUR’16, CARBONE et al. @AI’17]

Shared Channel Non-shared Channel

≥2 participants exactly 2 participants

Linear
implicitly synchronized

transmissions.

Non-linear
transmission with

no causal relations.

Linear
implicitly synchronized

transmissions.

14/55

State of the Art (2)

Program Logics and Tools For Concurrency

- Concurrent Separation Logic [O’HEARN @CONCUR’04]

- iCAP [SVENDSEN and BIRKEDAL @ESOP’14]

- locks [DODDS et al. @POPL’11], barriers [HOBOR & GHERGHINA, ESOP’18], higher-order functions [NANEVSKI et al.
@ESOP’14],

- SmallfootRG [VAFEIADIS et al., CONCUR’07], Iris [JUNG et al. @POPL’15], VeriFast [JACOBS et al. @NFM’11],
Infer @Facebook, SLAyer [Berdine @CAV’11]

Verification of Protocols

- Separation in time + Separation in space [HOARE and O’HEARN @TCS’08]

- CSL for copyless message passing [VILLARD et al. @APLAS’09]

- Chalice: message passing + locking [LEINO et al. @ESOP’10]

- IronFleet: proves safety and liveness [HAWBLITZEL et al. @SOSP’15]

- Verdi: vertical composition of protocols [WILCOX et al. @PLDI’15]

- DISEL: mechanized proofs for consensus protocols [SERGEY et al. @POPL’18]

15/55

1. Related Work

2. Session Logic

A. Specification Language

B. Identify Race Conditions

C. Relaxed Protocols

D. Modular Protocols

3. Communication Verification

4. Conclusion and Future Work

16/55

2A. Specification Language

Specification Language for Protocols

18/55

Collaborative Client – Server (revisited)

Client A Client B Server

alt
cond

¬cond

s(req1)

b(resp1)

a(resp1)

b(collab)

s(ok)

s(quit)

s(req2)

b(resp2)

Take – away 1: TYPE SYSTEMS -> LOGIC

Different from session types:
1. Messages are described by logical formulae.
2. Concurrent/arbitrary-ordered transmissions.
3. Uniform treatment of internal/external choice via

disjunction.

19/55

2B. Race-Free Conditions

Race Handling

21/55

Race Handling

Buyer B
…

price = receive(b);

clb = receive(b);

Buyer A
…

send(b, share);

Seller
…

send(b,val);

…

price = receive(b);

notifyAll(cnd);

clb = receive(b);

…

wait(cnd);

send(b, share);

…

send(b,val);

(1)

(2)

Current approaches for protocol formalization declare non-linear protocols as UNSAFE!

Our goal: relax the tag of “UNSAFE” non-linear protocols, by enforcing safety at the program code level.

22/55

Race Handling

Buyer B
…

price = receive(b);

clb = receive(b);

Buyer A
…

send(b, share);

Seller
…

send(b,val);(1)

Introduce a proof obligation on event ordering to prove that
S(3) happens-before A(4)

…

price = receive(b);

notifyAll(cnd);

clb = receive(b);

…

wait(cnd);

send(b, share);

…

send(b,val);
(2)

23/55

Race Handling

To ensure race-freedom on c, prove that:

S1 happens-before S2

and

R1 happens-before R2

24/55

Race Handling

To ensure race-freedom on c, prove that:

Properties of the HB relation

(HB between transmissions)

25/55

Orderings Constraint System
Denotes a “communicates-before” relation:

Take – away 2: TEMPORAL ORDERING 26/55

Definition: Race Relation

Race Formalization

Definition: Race-free Relation

27/55

Definition: Race-free Protocol

Race Formalization (cont.)

Theorem: Race-free Protocol

Take – away 3: RACE-FREE PROTOCOLS

28/55

2C. Relaxed Protocols

Race Handling

Buyer B
…

price = receive(b);

clb = receive(b);

Buyer A
…

send(b, share);

Seller
…

send(b,val);

…

price = receive(b);

notifyAll(cnd);

clb = receive(b);

…

wait(cnd);

send(b, share);

…

send(b,val);

(1)

(2)

Current approaches for protocol formalization declare non-linear protocols as UNSAFE!

Our goal: relax the tag of “UNSAFE” non-linear protocols, by enforcing safety at the program code level.

30/55

Specification Language for Relaxed Protocols

Given a global protocol G,

1. collect all the event orderings as guards and assumptions, and
2. refine G to account for the guards and assumptions.

31/55

1. Collecting Ordering Assumptions

Communicates-before between the
sending and receiving events:

Happens-before between events on
the same party P (program order):

Local events Global orderings

32/55

1. Collecting Ordering Guards

Proof-obligation to check race-freedom:

Theorem: Race-free Protocol

33/55

2. Protocol Refinement

Refinement
(automatically)

Take – away 4: RELAXED PROTOCOLS

34/55

2D. Modular Protocols

Modular Protocols

1. Make protocols instantiable by treating them as abstract predicates with parameters.

2. Attach a labelling system which contains instantiable labels and maintains uniqueness of
transmissions.

3. Create event ordering summaries for each predicate (HB relations between the first and last encounter
of each communicating party).

4. Synthesize the necessary conditions for a safe synchronization with the environment.

Refinement
(automatically)

36/55

Outline of the talk

1. Related Work

2. Session Logic

A. Specification Language

B. Identify Race Conditions

C. Relaxed Protocols

D. Modular Protocols

3. Communication Verification

4. Conclusion and Future Work

37/55

Verification Framework

code verifier
(HIP)

predicates lemmascode (C-like) pre/post

logical prover
(SLEEK)

range of pure provers:

Z3, Omega, Redlog, MONA, etc

38/55

Verification Framework

code verifier
(HIP)

predicates lemmas

range of pure provers:

Z3, Omega, Redlog, MONA, etc

pre/post

logical prover
(SLEEK)

code (C-like)

temporal constraint prover
CHR

39/55

Framework Overview

P1 P2 Pn

local projection

I1 I2 In

formal protocol
(manually)

relaxed protocol(automatically)
refinement

(automatically)

(automatically)

implementation
(by developer)

code verifier
(HIP)

predicates lemmascode (C-like)

range of pure provers:
Z3, Omega, Redlog, MONA, etc

pre/post

logical prover
(SLEEK)

CHR

informal protocol express

SPECIFY
VERIFY

40/55

Framework Overview

P1 P2 Pn

local projection

I1 I2 In

formal protocol
(manually)

relaxed protocol(automatically)
refinement

(automatically)

(automatically)

implementation
(by developer)

code verifier
(HIP)

predicates lemmascode (C-like)

range of pure provers:
Z3, Omega, Redlog, MONA, etc

pre/post

logical prover
(SLEEK)

CHR

informal protocol express

SPECIFY
VERIFY

41/55

Local Projection
per-party
projection

(automatically)

per channel
projection

(automatically)

42/55

Local Projection
per party
projection

(automatically)

per channel
projection

(automatically)

Race-free protocol:

Take – away 5: COLLABORATIVE PROVING

43/55

Local Projection
per party
projection

(automatically)

per channel
projection

(automatically)

SPECIFY
VERIFY

HO predicate example:

44/55

Local Projection
per party
projection

(automatically)

per channel
projection

(automatically)

SPECIFY
VERIFY

A

S

A, s

S, s

45/55

Communication Primitives

46/55

Collaborative Client – Server (revisited)
Buyer B

int price,clb;

…

price = receive(b);

clb = receive(b);

if(cond){

send(s, ok);

send(s, addr);

… = receive(s);

}else {

send(s, quit);

}

…

Buyer A

int price,share;

String book;

…

send(s, book);

price = receive(a);

share = foo(price);

send(b, share);

…

Seller

int id, val;

…

id = receive(s);

val = goo(id);

send(a,val);

send(b,val);

ans = receive(s);

if (s==ok){

… = receive(s);

send(b,…);

}

…

47/55

Collaborative Client – Server (revisited)
Buyer A

int price,share;

String book;

…

send(s, book);

price = receive(a);

share = foo(price);

send(b, share);

…

Seller

int id, val;

…

id = receive(s);

val = goo(id);

send(a,val);

send(b,val);

ans = receive(s);

if (s==ok){

… = receive(s);

send(b,…);

}

…

48/55

Race Handling (revisited)

Buyer B
…

price = receive(b);

clb = receive(b);

Buyer A
…

send(b, share);

Seller
…

send(b,val);(1)

Global Store Race free proof obligation projected onto each party

49/55

Race Handling (revisited)

Buyer B
…

price = receive(b);

notifyAll(cnd);

clb = receive(b);

Buyer A
…

wait(cnd);

send(b, share);

Seller
…

send(b,val);(2)

50/55

Implementation

In OCaml, affixed to HIP/SLEEK.

The constraint ordering system is implemented in CHR.

Highly modular:
•The protocol components are encoded as higher order primitive predicates.

•The predicates are manipulated by user-defined lemmas.

⇒ finely “tunable” logic to cope with future extensions.

Test cases : variation of client-server, variations of the collaborative client – server, atm,
vending machine, video streaming.

51/55

Outline of the talk

1. Related Work

2. Session Logic

A. Specification Language

B. Identify Race Conditions

C. Relaxed Protocols

D. Modular Protocols

3. Communication Verification

4. Conclusion and Future Work

52/55

We provide a novel theory and necessary tools to specify
and reason about distributed systems!

We have shown how to:

… move from types systems → logic (going beyond type safety)

… achieve composable verification of safety (type-safe, race-free)

via local projection and collaborative proving.

… ensure temporal ordering, without the explicit concept of time

… support relaxed and modular protocols:

realistic non-linear protocols → race-free protocols with explicit synchronization

A Language-Based Approach to Formalizing Protocols

54/55

Thesis:
Language support makes it possible:
• to specify communication protocols, and then
• to verify (automatically) that an implementation conforms to the given protocol

in a safe way.

Beyond This Talk

More in the dissertation:

- a dyadic session logic which emphasizes the benefits of going beyond traditional type check:
disjunction to replace internal/external choices, higher order-channels, copy and copyless-message
passing, deadlock detection, delegation.

- multiparty session logic: safety (wrt conformance, race, deadlock) theorems with soundness proofs,
detailed verification examples, nondeterminism, efficient algorithm for collecting ordering
assertions, inference algorithm for synchronization with the context, recursion, delegation,
verification rules, entailment rules, explicit synchronization primitives.

Future work:

- synthesize the specifications for the explicit synchronization mechanisms.

- investigate the formalization of additional properties: consensus of distributed systems.

Thank you!
55/55

BIBLIOGRAPHY

BELL , C. J., APPEL , A. W., and WALKER , D., “Concurrent Separation Logic for Pipelined Parallelization,” in SAS 2010, pp. 151–166, Springer.

CAIRES, L., “Spatial-Behavioral Types for Concurrency and Resource Control in Distributed Systems,” Theoretical Computer Science, vol. 402,
no. 2-3, pp. 120–141, 2008

CAIRES , L. and PFENNING, F., “Session Types as Intuitionistic Linear Propositions”, in CONCUR’10.

CAIRES , L. and SECO , J. C., “The Type Discipline of Behavioral Separation,” in POPL 2013.

CAIRES, L. and VIEIRA, H. T., “Conversation Types,” in European Symposium on Programming, pp. 285–300, Springer, 2009.

CAPECCHI, S., GIACHINO, E., and YOSHIDA, N., “Global Escape in Multiparty Sessions,” Mathematical Structures in Computer Science, vol. 26,
no. 02, pp. 156–205, 2016

CARBONE, M., HONDA, K., and YOSHIDA, N., “Structured Interactional Exceptions in Session Types,” in International Conference on
Concurrency Theory, pp. 402–417, Springer, 2008.

CARBONE, M. and MONTESI, F., “Deadlock-freedom-by-design: Multiparty Asynchronous Global Programming,” SIGPLAN Not., vol. 48, pp.
263–274, Jan. 2013.

COPPO, M., DEZANI-CIANCAGLINI, M., YOSHIDA, N., and PADOVANI, L., “Global Progress for Dynamically Interleaved Multiparty Sessions,”
Mathematical Structures in Computer Science, vol. 26, no. 02, pp. 238–302, 2016.

DEMANGEON, R., HONDA, K., “Nested Protocols in Session Types”, 23rd International Conference on Concurrency Theory (CONCUR 2012)
56/55

DENIELOU, P.-M. and YOSHIDA, N., “Buffered Communication Analysis in Distributed Multiparty Sessions,” in CONCUR 2010, vol. 6269 of
LNCS, Springer, 2010.

DENIÉLOU, P.-M. and YOSHIDA, N., “Dynamic multirole session types,” in Proceedings of the 38th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’11, (New York, NY, USA), pp. 435–446, ACM, 2011.

DEZANI-CIANCAGLINI, M., MOSTROUS, D., YOSHIDA, N., and DROSSOPOULOU, S., “Session types for object-oriented languages,” in
Proceedings of the 20th European Conference on Object-Oriented Programming, ECOOP’06, (Berlin, Heidelberg), pp. 328–
352, Springer-Verlag, 2006.

GAY, S. and HOLE, M., “Subtyping for Session Types in the pi-Calculus,” Acta Informatica, vol. 42, no. 2-3, pp. 191–225, 2005.

GAY, S. J. and VASCONCELOS, V. T., “Linear Type Theory for Asynchronous Session Types,” Journal of Functional Programming, vol. 20, no. 01,
pp. 19–50, 2010.

GIUNTI, M. and VASCONCELOS, V. T., “A Linear Account of Session Types in the Pi Calculus”, in CONCUR 2010

HOARE, T. and O’HEARN, P., “Separation Logic Semantics for Communicating Processes,” Electronic Notes in Theoretical Computer Science,
vol. 212, pp. 3–25, 2008.

HONDA, K., “Composing Processes,” in Proceedings of the 23rd ACM SIGPLAN-SIGACT Symposium on Principles of programming languages,
pp. 344–357, ACM, 1996.

57/55

HONDA , K., VASCONCELOS , V. T., and KUBO , M., “Language primitives and type discipline for structured communication-based
programming,” in ESOP ’98.

HONDA , K., YOSHIDA , N., and CARBONE , M., “Multiparty Asynchronous Session Types,” POPL 2008.

HONDA, K., YOSHIDA, N., and CARBONE, M., “Multiparty Asynchronous Session Types,” Journal of the ACM, vol. 63, pp. 1–67, 2016.

HU, R., YOSHIDA, N., “Hybrid Session Verification Through Endpoint API Generation”, Proceedings of the 19th International Conference on
Fundamental Approaches to Software Engineering - Volume 9633 , 2016

IGARASHI , A. and KOBAYASHI , N., “A Generic Type System for the Pi-Calculus,” Theoretical Computer Science, vol. 311, no. 1, pp. 121 – 163,
2004.

KOBAYASHI, N., “Type Systems for Concurrent Processes: From Deadlock-freedom to Livelock-freedom, Time-boundedness,” in IFIP
International Conference on Theoretical Computer Science, pp. 365–389, Springer, 2000.

KOBAYASHI, N., “A Type System for Lock-free Processes,” Information and Computation, vol. 177, no. 2, pp. 122–159, 2002.

KOBAYASHI, N., “Type Systems for Concurrent Programs,” in Formal Methods at the Crossroads. From Panacea to Foundational Support, pp.
439–453, Springer, 2003.

KOBAYASHI, N., “Type-based Information Flow Analysis for the -calculus,” Acta Informatica, vol. 42, no. 4-5, pp. 291–347, 2005.

58/55

KOBAYASHI, N., “A New Type System for Deadlock-free Processes,” in CONCUR 2006–Concurrency Theory, pp. 233–247, Springer Berlin
Heidelberg, 2006.

KOBAYASHI, N. and LANEVE, C., “Deadlock Analysis of Unbounded Process Networks,” Information and Computation, vol. 252, pp. 48–70,
2017.

KOUZAPAS, D., YOSHIDA, N., HU, R., and HONDA, K., “On Asynchronous Eventful Session Semantics,” Mathematical Structures in Computer
Science, vol. 26, no. 02, pp. 303–364, 2016.

LANGE, J., YOSHIDA, N., “On the Undecidability of Asynchronous Session Subtyping”, ”, Proceedings of the 19th International Conference on
Fundamental Approaches to Software Engineering - Volume 9633 , 2016

LEINO , K. R. M., MÜLLER , P., and SMANS , J., “Deadlock-Free Channels and Locks,” in ESOP 2010, pp. 407–426, Springer.

LEINO , K. R. M. and MÜLLER , P., “A Basis for Verifying Multi-Threaded Programs,” in ESOP 2009 pp. 378–393, Springer.

LINDLEY, S. and MORRIS, J. G., “A Semantics for Propositions as Sessions,” in European Symposium on Programming Languages and Systems,
pp. 560–584, Springer, 2015.

LINDLEY, S. and MORRIS, J. G., “Embedding Session Types in Haskell,” in Proceedings of the 9th International Symposium on Haskell, pp. 133–
145, ACM, 2016.

NEUBAUER, M. and THIEMANN, P., “An Implementation of Session Types,” in International Symposium on Practical Aspects of Declarative
Languages, pp. 56–70, Springer, 2004. 59/55

NG, N. and YOSHIDA, N., “Pabble: Parameterised Scribble for Parallel Programming,” in Parallel, Distributed and Network-Based Processing
(PDP), 2014 22nd Euromicro International Conference on, pp. 707–714, IEEE, 2014.

ORCHARD, D. and YOSHIDA, N., “Effects as Sessions, Sessions as Effects,” in ACM SIGPLAN Notices, vol. 51, pp. 568–581, ACM, POPL 2016.

O’HEARN, P. W., “Resources, concurrency, and local reasoning”, Th. Comp. Sci, 375, 2007

PADOVANI, L., “Deadlock and Lock Freedom in the Linear -calculus,” in Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual
Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer
Science (LICS), p. 72, ACM, 2014.

TURON, A. and WAND, M., “A Resource Analysis of the -calculus,” Electronic Notes in Theoretical Computer Science, vol. 276, pp. 313–334,
2011.

VILLARD , J., L OZES , É., and C ALCAGNO , C., “Proving copyless message passing,” in APLAS 2009 , pp. 194–209, Springer.

WADLER, P., “Propositions as Sessions,” ACM SIGPLAN Notices, vol. 47, no. 9, pp. 273–286, 2012.

YOSHIDA, N., HU, R., NEYKOVA, R., NG, N., “The Scribble Protocol Language”, TGC 2013: 8th International Symposium on Trustworthy Global
Computing - Volume 8358

60/55

Explicit Synchronization

61/55

Explicit Synchronization

Take – away 5: EXPLICIT SYNCHRONIZATION 62/55

Communication Primitives

63/55

Communication Primitives

64/55

Race Handling

Client B
…

price = receive(b);

notifyAll(cnd);

clb = receive(b);

Client A
…

wait(cnd);

send(b, share);

Server
…

send(b,val);(1)

Race free proof obligation projected onto each party

wait(cnd);

notifyAll(cnd);

65/55

Collaborative Client – Server (revisited)

Client A Client B Server

alt
cond

¬cond

s(req1)

b(resp1)

a(resp1)

b(collab)

s(ok)

s(quit)

s(req2)

b(resp2)

Take – away 1: TYPE SYSTEMS -> LOGIC

Different from session types:
1. Messages are described by logical formulae.
2. Concurrent/arbitrary-ordered transmissions.
3. Uniform treatment of internal/external choice via

disjunction.

* DELMOLINO et al., “Step by Step Towards Creating a Safe Smart Contract: Lessons and Insights from a Cryptocurrency Lab”, in Financial
Cryptography and Data Security, pp.79-94, 2016

*Common pitfall in creating smart contracts:
the domain of the receiver does not
subsume the domain of the sender.

66/55

Example 3 - Verification

“Release” lemma:

“Join-emp” lemma:

68/55

Example 3 - Verification

x = receive(d);

send(c, …);

69/55

Example 3 – Verification

x = receive(d);

send(c, …);

70/55

Example 3 – Verification

x = receive(d);

send(c, …);

71/55

Communication Protocols – issues

“A” sends a product id to “B” via channel “c”

A
…
send(c, “TV”);

B
…
int x;
x = receive(c);

Protocol Implementation

72/55

Communication Protocols – issues

“A” sends a product id to “B” via channel “c”

Type Safety
A

…
send(c, “TV”);

B
…
int x;
x = receive(c);

Protocol Implementation

73/55

Communication Protocols – issues

“A” sends a product id to “B” via channel “c”

“A” sends to “B” the number of required items via
channel “d”.

A
…
send(d, 10);
send(d, 10);

B
…
x = receive(d);

A
…
send(c, “TV”);

B
…
int x;
x = receive(c);

Type Safety
Protocol Implementation

74/55

Communication Protocols – issues

“A” sends a product id to “B” via channel “c”

“A” sends to “B” the number of required items via
channel “d”.

A
…
send(d, 10);
send(d, 10);

B
…
x = receive(d);

Unexpected transmission

A
…
send(c, “TV”);

B
…
int x;
x = receive(c);

Type Safety
Protocol Implementation

75/55

Communication Protocols – issues

“A” sends a product id to “B” via channel “c”

“A” sends to “B” the number of required items via
channel “d”.

“A” first sends the result to “B”
and then to “C” via channel “c”

A
…
send(d, 10);
send(d, 10);

B
…
x = receive(d);

A
…
send(c, “Pass”);
send(c, “Fail”);

B
…
a = receive(c);

C
…
a = receive(c);

Unexpected transmission

A
…
send(c, “TV”);

B
…
int x;
x = receive(c);

Type Safety
Protocol Implementation

76/55

Communication Protocols – issues

“A” sends a product id to “B” via channel “c”

“A” sends to “B” the number of required items via
channel “d”.

“A” first sends the result to “B”
and then to “C” via channel “c”

A
…
send(d, 10);
send(d, 10);

B
…
x = receive(d);

A
…
send(c, “Pass”);
send(c, “Fail”);

B
…
a = receive(c);

C
…
a = receive(c);

Unexpected transmission

Who reads “Pass”?
Race on reading from c!

A
…
send(c, “TV”);

B
…
int x;
x = receive(c);

Type Safety
Protocol Implementation

77/55

Communication Protocols – issues

“A” sends a product id to “B” via channel “c”

“A” sends to “B” the number of required items via
channel “d”.

“A” first sends the result to “B”
and then to “C” via channel “c”

A
…
send(d, 10);
send(d, 10);

B
…
x = receive(d);

A
…
send(c, “Pass”);
send(c, “Fail”);

B
…
a = receive(c);

C
…
a = receive(c);

Unexpected transmission

Transmission Race

Who reads “Pass”?
Race on reading from c!

A
…
send(c, “TV”);

B
…
int x;
x = receive(c);

Type Safety
Protocol Implementation

78/55

Entailment Check – selected rules

79/55

Entailment – extension of Concurrent Separation Logic

Separation Logic’s frame rule:

CSL frame rule:

80/55

Entailment – extension of Concurrent Separation Logic

Separation Logic’s frame rule:

CSL frame rule:

Separation in space!

81/55

Entailment – extension of Concurrent Separation Logic

Separation Logic’s frame rule:

CSL frame rule:

CSL + Ordering System: Separation in space + Separation in time

Separation in space!

82/55

Orderings Collection

Example 3:

83/55

Orderings Collection

Example 3:

B1 B2F1 F2

B F

84/55

Orderings Collection

Example 3:

B1 B2F1 F2

B F

85/55

Orderings Collection

Example 3:

B1 B2F1 F2

B F

86/55

Well-formedness (*)

87/55

Well-formedness (\/)

88/55

A Session Logic for
Relaxed Communication Protocols

Relaxed Communication Protocols – Motivation (i)

“A” first sends the result to “B” and then to “C” via channel “c”

(1)

A
…
send(c, “Pass”);
send(c, “Fail”);

B
…
a = receive(c);

C
…
a = receive(c);

90/55

Relaxed Communication Protocols – Motivation (i)

“A” first sends the result to “B” and then to “C” via channel “c”

(1)

A
…
send(c, “Pass”);
send(c, “Fail”);

B
…
a = receive(c);
notifyAll(w);

C
…

wait(w);
a = receive(c);

(2)

A
…
send(c, “Pass”);
send(c, “Fail”);

B
…
a = receive(c);

C
…
a = receive(c);

91/55

Relaxed Communication Protocols – Motivation (i)

“A” first sends the result to “B” and then to “C” via channel “c”
A

…
send(c, “Pass”);
send(c, “Fail”);

B
…
a = receive(c);

C
…
a = receive(c);

A
…
send(c, “Pass”);
send(c, “Fail”);

B
…
a = receive(c);
notifyAll(w);

C
…

wait(w);
a = receive(c);

(1)

(2)

Current approaches for session formalization declare this protocol as UNSAFE!
(due to race on reading from “c”)

92/55

Relaxed Communication Protocols – Motivation (i)

“A” first sends the result to “B” and then to “C” via channel “c”
A

…
send(c, “Pass”);
send(c, “Fail”);

B
…
a = receive(c);

C
…
a = receive(c);

A
…
send(c, “Pass”);
send(c, “Fail”);

B
…
a = receive(c);
notifyAll(w);

C
…

wait(w);
a = receive(c);

(1)

(2)

Current approaches for session formalization declare this protocol as UNSAFE!
(due to race on reading from “c”)

Our goal: relax the tag of “SAFE” protocols, and enforce safety at the program code level.
93/55

Relaxed Communication Protocols – Motivation (ii)

“B” and “C” send their computation result to “A” via channel “c”

A
…
x = receive(c);
y = receive(c);
return x + y;

B
…
send(c,10);

C
…
send(c,15);

94/55

Relaxed Communication Protocols – Motivation (ii)

“B” and “C” send their computation result to “A” via channel “c”

However, parallel computing has been used to model difficult problems in many areas: rush hour
traffic, weather, auto assembly, photonics, molecular sciences, etc.

A
…
x = receive(c);
y = receive(c);
return x + y;

B
…
send(c,10);

C
…
send(c,15);

Current approaches for session formalization declare this protocol as UNSAFE!
(due to race on sending to “c”)

95/55

Collaborative Client – Server (revisited)

Take – away 1: TYPE SYSTEMS -> LOGIC

Client A Client B Server

alt
cond

¬cond

s(req1)

b(resp1)

a(resp1)

b(collab)

s(ok)

s(quit)

s(req2)

b(resp2)

96/55

Example 1

“A” first sends the result to “B” and then to “C” via channel “c”

A
…
send(c, “Pass”);
send(c, “Fail”);

B
…
a = receive(c);
notifyAll(w);

C
…

wait(w);
a = receive(c);

97/55

Example 1

“A” first sends the result to “B” and then to “C” via channel “c”

A
…
send(c, “Pass”);
send(c, “Fail”);

B
…
a = receive(c);
notifyAll(w);

C
…

wait(w);
a = receive(c);

98/55

Example 1

“A” first sends the result to “B” and then to “C” via channel “c”

Introduce a proof obligation on event ordering to prove that
B happens-before C

A
…
send(c, “Pass”);
send(c, “Fail”);

B
…
a = receive(c);
notifyAll(w);

C
…

wait(w);
a = receive(c);

99/55

Example 2

A
…
send(c, “TV”);

B
…
String x = receive(c);
int y = receive(c);

C
…

send(c,2);

Race on writing to c!

“A” sends to “B” a string and then “C” sends to “B” an integer via channel “c”

100/5
5

Example 2

“A” sends to “B” a string and then “C” sends to “B” an integer via channel “c”

A
…
send(c, “TV”);
notifyAll(w);

B
…
String x = receive(c);
int y = receive(c);

C
…

wait(w);
send(c,2);

101/5
5

Example 2

“A” sends to “B” a string and then “C” sends to “B” an integer via channel “c”

A
…
send(c, “TV”);
notifyAll(w);

B
…
String x = receive(c);
int y = receive(c);

C
…

wait(w);
send(c,2);

Introduce a proof obligation on event ordering to prove that
A happens-before C

102/5
5

Introduce Race-Free Guards

To ensure race-freedom on c, prove that:

HB between events HB between transmissions

103/5
5

Happens-Before Relation

104/5
5

Protocols Diagrammatic View

Example to highlight adjacent transmissions:

105/5
5

COMMUNICATION PROTOCOLS – issues (revisited)

“A” sends a product id to “B” via channel “c”

FAIL

A
…
send(c, “TV”);

B
…
int x;
x = receive(c);

Type Safety
Protocol

106/5
5

COMMUNICATION PROTOCOLS – issues (revisited)

“A” sends a product id to “B” via channel “c”

“A” sends to “B” the number of required items via
channel “d”.

A
…
x = receive(d);
send(d, 10);

B
…
x = receive(d);

Verification fails due to unexpected transmission

FAIL

Type Safety A
…
send(c, “TV”);

B
…
int x;
x = receive(c);

Protocol

107/5
5

COMMUNICATION PROTOCOLS – issues (revisited)

“A” first sends the result to “B” and then to “C” via channel “c”

A
…
send(c, “Pass”);
send(c, “Fail”);

B
…
a = receive(c);

C
…
a = receive(c);

A
…
send(c, “Yes”);
send(c, “No”);

B
…
a = receive(c);
notifyAll(w);

C
…

wait(w);
a = receive(c);

Fail due to data race

Succeeds due to explicit sync

108/5
5

Relaxed Communication Protocols - issues (revisited)

Nondeterminism:

A
…
x = receive(c);
y = receive(c);
return x + y;

B
…
send(c,10);

C
…
send(c,15);

Succeeds with extra conditions: (i) same receiver, (ii) equivalent messages

109/5
5

Modular Protocols

Client A Client B Server

alt
cond

¬cond

s(req1)

a(resp1)

b(collab)

s(ok)

s(quit)

s(req2)

b(resp2)

Client Server

alt
cond

¬cond

s(req1)

c(resp1)

s(ok)

s(quit)

s(req2)

c(resp2)

b(resp1)

Client 1 Client 2

b(collab)

b(resp1)

1. Make protocols instantiable by adding protocol parameters.

2. Attach a labelling system which contains instantiable labels and maintains uniqueness of
transmissions.

3. Create event ordering summaries for each predicate.
110/5

5

State of the Art

Behavioural Types

Logic

[IGA08]

[CAI08][HON08]

[HON98]

[CAI13]

[CAI09]

[CAI16]

[CAR08]

[CAR09]

[CAR13]

[COP16]

[DEN10]

[DEN11]

[DEZ06]
[GAY05]

[GAY10]

[HON96]

[HON16]

[KOB00]
[KOB02]

[KOB03]
[KOB05]

[KOB06]

[KOB17]

[KOZ16] [LIN16]

[NEU04]

[NG14] [PAD14]
[ORC16]

[VIL09]

[LEI10]

[LEI09]
[HOA08]

[BEL10]

[TUR11]

[LIN15]

[WAD12]

Session types

111/5
5

State of the Art

BEHAVIORAL TYPES PROGRAM LOGICS FOR CONCURRENCY[HONDA, POPL’96]
[KOBAYASHI, TCS’00][KOBAYASHI, IC’02]

[KOBAYASHI, LNCS’03]

[KOBAYASHI, CONCUR’06]
[KOBAYASHI, AI’05]

[KOBAYASHI et al, IC’07]

[IGARASHI and KOBAYASHI, TCS’04]

[CAIRES, TCS’08]

[CAIRES and SECO, 2013]

SESSION TYPES PROVING PROTOCOLS[HONDA et al., ESOP’98]
[NEUBAUER et al, PADL’04] [GAY et al., AI’05]

[CARBONE et al., CT’08]
[GAY et al., JFP’10]

[ORCHARD and YOSHIDA et al., POPL’16]
[KOUZAPAS et al., MSCS’16]

[HONDA et al., POPL’08]

[COPPO et al., MSCS’16]

[CAIRES and VIEIRA, ESOP’09][CARBONE et al., POPL’13]

[CAPECCHI et al., MSCS’16] [CARBONE, TCS’09]
[BOCCHI, CONCUR’10][LÓPEZ et al., OOPSLA’15]

[NG and YOSHIDA, PDP’15]PADDLE [LANGE et al., POPL’17]
[HU and YOSHIDA, FASE’17]

[LANGE and YOSHIDA, FASE’17]
[HU and YOSHIDA, FASE’16]

[YOSHIDA et al., TGC’13]SCRIBBLE [CARBONE et al., AI’17]

[CARBONE et al.,
CONCUR’15]

[CAIRES and LOPEZ,
FORTE’16]

[CARBONE et al.,
CONCUR’16]

[CAIRES and PFENNING,
CONCUR’10]

[CAIRES et al., MSCS’12]
[WADLER, ICFP’12]

[LINDLEY and MORRIS,
ESOP’15]

[DENIÉLOU and YOSHIDA et al., POPL’11]

[O’HEARN, CONCUR’04]

112/5
5

Logics with channel primitives:

• CSL for copyless message passing [VIL09]: an extension of separation for bidirectional communication
between two players using global contracts

• CSL for pipelined parallelization [BEL10]: an extension of separation logic which supports multiple
players communicating through a single shared channel

• Chalice[LEI09] with support for message passing [LEI10]: modular verification to prevent deadlocks of
programs which mix message passing and locking.

[VIL09] VILLARD , J., L OZES , É., and C ALCAGNO , C., “Proving copyless message passing,” in APLAS 2009 , pp. 194–209, Springer.
[BEL10] BELL , C. J., APPEL , A. W., and WALKER , D., “Concurrent Separation Logic for Pipelined Parallelization,” in SAS 2010, pp. 151–166, Springer.
[LEI10] LEINO , K. R. M., MÜLLER , P., and SMANS , J., “Deadlock-Free Channels and Locks,” in ESOP 2010, pp. 407–426, Springer.
[LEI09] LEINO , K. R. M. and MÜLLER , P., “A Basis for Verifying Multi-Threaded Programs,” in ESOP 2009 pp. 378–393, Springer.

Related Work

114/5
5

The PLS2 Group The TedTalkLah Family

The Energizing Interns

Yoga Friends

Olivier

Thank you!

	A Session Logic for�Relaxed Communication Protocols
	Slide Number 2
	Implementation of Protocols: loosely or tightly coupled
	Compatibility of Protocols
	A Telling Example
	Collaborative Client – Server*
	Collaborative Client – Server
	Collaborative Client – Server
	How to Deal with Software Bugs?
	The Programming Language Approach
	A Language-Based Approach to Formalizing Protocols
	Outline Of The Talk
	Slide Number 13
	State of the Art (1)
	State of the Art (2)
	Slide Number 16
	2A. Specification Language
	Specification Language for Protocols
	Collaborative Client – Server (revisited)
	2B. Race-Free Conditions
	Race Handling
	Race Handling
	Race Handling
	Race Handling
	Race Handling
	Orderings Constraint System
	Race Formalization
	Race Formalization (cont.)
	2C. Relaxed Protocols
	Race Handling
	Specification Language for Relaxed Protocols
	1. Collecting Ordering Assumptions
	1. Collecting Ordering Guards
	2. Protocol Refinement
	2D. Modular Protocols
	Modular Protocols
	Outline of the talk
	Verification Framework
	Verification Framework
	Framework Overview
	Framework Overview
	Local Projection
	Local Projection
	Local Projection
	Local Projection
	Communication Primitives
	Collaborative Client – Server (revisited)
	Collaborative Client – Server (revisited)
	Race Handling (revisited)
	Race Handling (revisited)
	Implementation
	Outline of the talk
	Slide Number 53
	A Language-Based Approach to Formalizing Protocols
	Beyond This Talk
	BIBLIOGRAPHY
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Explicit Synchronization
	Explicit Synchronization
	Communication Primitives
	Communication Primitives
	Race Handling
	Collaborative Client – Server (revisited)
	Example 3 - Verification
	Example 3 - Verification
	Example 3 – Verification
	Example 3 – Verification
	Communication Protocols – issues
	Communication Protocols – issues
	Communication Protocols – issues
	Communication Protocols – issues
	Communication Protocols – issues
	Communication Protocols – issues
	Communication Protocols – issues
	Entailment Check – selected rules
	Entailment – extension of Concurrent Separation Logic
	Entailment – extension of Concurrent Separation Logic
	Entailment – extension of Concurrent Separation Logic
	Orderings Collection
	Orderings Collection
	Orderings Collection
	Orderings Collection
	Well-formedness (*)
	Well-formedness (\/)
	A Session Logic for�Relaxed Communication Protocols
	Relaxed Communication Protocols – Motivation (i)
	Relaxed Communication Protocols – Motivation (i)
	Relaxed Communication Protocols – Motivation (i)
	Relaxed Communication Protocols – Motivation (i)
	Relaxed Communication Protocols – Motivation (ii)
	Relaxed Communication Protocols – Motivation (ii)
	Collaborative Client – Server (revisited)
	Example 1
	Example 1
	Example 1
	Example 2
	Example 2
	Example 2
	Introduce Race-Free Guards
	Happens-Before Relation
	Protocols Diagrammatic View
	COMMUNICATION PROTOCOLS – issues (revisited)
	COMMUNICATION PROTOCOLS – issues (revisited)
	COMMUNICATION PROTOCOLS – issues (revisited)
	Relaxed Communication Protocols - issues (revisited)
	Modular Protocols
	State of the Art
	State of the Art
	Related Work
	Slide Number 115
	Slide Number 116
	Slide Number 117

