
A Session Logic for
Relaxed Communication Protocols

Thesis Defense
6th December 2017

Andreea Costea

Department of Computer Science

Advisor: A/P Wei-Ngan Chin



Design Specify Implement Validate Operate & Maintain

Q1: How to ensure that a protocol is correctly implemented?

(communication 
protocols)

(different 
dev teams)

“A communication protocol defines the format and the order of messages 
exchanged between two or more communicating entities”. [Kurose and Ross]
Example of protocols: payment systems, smart contracts, NFS, Linux boot protocol, FTP, etc

?
Systems development life cycle:



Implementation of Protocols: loosely or tightly coupled

Writing software is error-prone.

Writing communication-centered software even more so!

Memory

Process CMemory

Process A
Memory

Process D

Memory

Process B

Memory

Process A Process B Process C Process D

Q2: How to ensure that implementations are safe?

protocol
(RFC xxxx)

Design Specify Implement Validate Operate & Maintain
(network of 
dev teams)
?
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Compatibility of Protocols

Q3: How to ensure that protocols are safely composed?

protocol

AB

protocol
B

protocol

A

Design Specify Implement Validate Operate & Maintain
(communication 

protocol)
?
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A Telling Example



Collaborative Client – Server*

Protocol Elements:
- communicating entities (parties): Client A, Client B, Server
- messages: req, resp, collab, ok, quit
- direction and order of transmission
- channel: a, b, s
- conditioned communication: cond

Communication Model:
- asynchronous communication
- FIFO mailbox channels

*Usages: Two Buyers - One Seller Protocol [Honda et al., 2008], Intel CS for WebRTC, Hybrid client-server 
for 3D design [Desprat et al. 2015], Collaborative Remote Experimentation [Callaghan et al. 2014], etc.

Client A Client B Server

alt
cond

¬cond

s(req1)

b(resp1)

a(resp1)

b(collab)

s(ok)

s(quit)

s(req2)

b(resp2)
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Buyer B

int price,clb;

…

price = receive(b); 

clb = receive(b);

if(cond){

send(s, ok);

send(s, addr);

… = receive(s);

}else{ 

send(s, quit);

}

Collaborative Client – Server 

Buyer A

int price,share;

String book;

…

send(s, book);

price = receive(a);

share = foo(price);

send(b, share);

Seller

int id, val;

…

id = receive(s);

val = goo(id);

send(a,val);

send(b,val);

ans = receive(s);

if (s==ok){

… = receive(s);

send(b,…);

} 

Client A Client B Server

alt
cond

¬cond

s(req1)

b(resp1)

a(resp1)

b(collab)

s(ok)

s(quit)

s(req2)

b(resp2)
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Buyer B

int price,clb;

…

price = receive(b); 

clb = receive(b);

if(cond){

send(s, ok);

send(s, addr);

… = receive(s);

}else{ 

send(s, quit);

}

Collaborative Client – Server 

Buyer A

int price,share;

String book;

…

send(s, book);

price = receive(a);

share = foo(price);

send(b, share);

Seller

int id, val;

…

id = receive(s);

val = goo(id);

send(a,val);

send(b,val);

ans = receive(s);

if (s==ok){

… = receive(s);

send(b,…);

} 
Unsafe type manipulation
Race: non-linear usage channel b

Client A Client B Server

alt
cond

¬cond

s(req1)

b(resp1)

a(resp1)

b(collab)

s(ok)

s(quit)

s(req2)

b(resp2)
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How to Deal with Software Bugs?

Testing

Is it good enough?

“Testing only shows the presence of bugs, 
not their absence.” 

Edsger W. Dijkstra

HW & SW Mitigation Solutions

P

program’s input
(concrete values) (expected behaviour?)

program’s output
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The Programming Language Approach

Given a notion of computation,
design a notation to express this computation

together with reasoning tools for that notation.
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A Language-Based Approach to Formalizing Protocols

implementation
bug identification

or
proof of correctness

(automatically)

Thesis:
Language support makes it possible: 
• to specify communication protocols, and then 
• to verify (automatically)  that an implementation conforms to the given protocol 

in a safe way.

SPECIFY

VERIFY

express formal protocol(manually)
informal protocol
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Outline Of The Talk

1. Related Work

2. Session Logic

A. Specification Language

B. Identify Race Conditions

C. Relaxed Protocols

D. Modular Protocols

3. Communication Verification 

4. Conclusion and Future Work
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State of the Art (1)

Binary Session Types [HONDA et al. @ESOP’98]

- Subtyping [GAY & HOLE @AI’05]

- Sessions as effects [ORCHARD & YOSHIDA et al. @POPL’16]

- Embedding to Haskell [NEUBAUER & THIEMANN @PADL’04],
multi-threaded ML [VASCONCELOS et al., @TCS’06], F# [Corin et al. @CFS’07], Java [Ciancaglini et al. ECOOP’06], etc

Multiparty Session Types [HONDA et al. @POPL’08]

- Progress – disallow shared channels [BETTINI et al. @CONCUR’08, COPPO et al. @MSCS’16]

- Linearity – shared channels are a must [CAIRES & PFENNING @CONCUR’10, GIUNTI & VASCONCELOS @MSCS’14, 
SCALAS et al. @ECOOP’17]

- Adding contracts [BOCCHI et al. @CONCUR’10], synthesize deadlock-free choreographies [CARBONE & MONTENSI 
@POPL’13], dynamic multirole [DENIELOU & YOSHIDA @POPL’11],  nested sessions [DEMANGEON & HONDA 
@CONCUR12], safety for Go programs [YOSHIDA et al @POPL’17]

- Correspondence with linear logic [CAIRES & PFENNING @CONCUR’10, CAIRES et al. @MSCS’12, CARBONE et al. 
@CONCUR’15, CARBONE et al. @CONCUR’16, CARBONE et al. @AI’17]

Shared Channel Non-shared Channel

≥2 participants exactly 2 participants

Linear
implicitly synchronized 

transmissions.

Non-linear
transmission with 

no causal relations. 

Linear
implicitly synchronized 

transmissions.
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State of the Art (2)

Program Logics and Tools For Concurrency

- Concurrent Separation Logic [O’HEARN @CONCUR’04]

- iCAP [SVENDSEN and BIRKEDAL @ESOP’14]

- locks [DODDS et al. @POPL’11], barriers [HOBOR & GHERGHINA, ESOP’18], higher-order functions [NANEVSKI et al. 
@ESOP’14], 

- SmallfootRG [VAFEIADIS et al., CONCUR’07], Iris [JUNG et al. @POPL’15], VeriFast [JACOBS et al. @NFM’11],  
Infer @Facebook, SLAyer [Berdine @CAV’11]

Verification of Protocols

- Separation in time + Separation in space [HOARE and O’HEARN @TCS’08]

- CSL for copyless message passing [VILLARD et al. @APLAS’09]

- Chalice: message passing + locking [LEINO et al. @ESOP’10]

- IronFleet: proves safety and liveness [HAWBLITZEL et al. @SOSP’15]

- Verdi: vertical composition of protocols [WILCOX et al. @PLDI’15]

- DISEL: mechanized proofs for consensus protocols [SERGEY et al. @POPL’18]
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1. Related Work

2. Session Logic

A. Specification Language

B. Identify Race Conditions

C. Relaxed Protocols

D. Modular Protocols

3. Communication Verification 

4. Conclusion and Future Work
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2A. Specification Language



Specification Language for Protocols
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Collaborative Client – Server (revisited)

Client A Client B Server

alt
cond

¬cond

s(req1)

b(resp1)

a(resp1)

b(collab)

s(ok)

s(quit)

s(req2)

b(resp2)

Take – away 1:  TYPE SYSTEMS -> LOGIC

Different from session types:
1. Messages are described by logical formulae. 
2. Concurrent/arbitrary-ordered transmissions.
3. Uniform treatment of internal/external choice via 

disjunction. 
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2B. Race-Free Conditions



Race Handling
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Race Handling

Buyer B
…

price = receive(b);

clb = receive(b); 

Buyer A
…

send(b, share);

Seller
…

send(b,val);

…

price = receive(b);

notifyAll(cnd);

clb = receive(b); 

…

wait(cnd);

send(b, share);

…

send(b,val);

(1)

(2)

Current approaches for protocol formalization declare non-linear protocols as UNSAFE! 

Our goal: relax the tag of “UNSAFE” non-linear protocols, by enforcing safety at the program code level.
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Race Handling

Buyer B
…

price = receive(b);

clb = receive(b); 

Buyer A
…

send(b, share);

Seller
…

send(b,val);(1)

Introduce a proof obligation on event ordering to prove that 
S(3) happens-before A(4)

…

price = receive(b);

notifyAll(cnd);

clb = receive(b); 

…

wait(cnd);

send(b, share);

…

send(b,val);
(2)
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Race Handling

To ensure race-freedom on c, prove that:

S1 happens-before S2

and

R1 happens-before R2
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Race Handling

To ensure race-freedom on c, prove that:

Properties of the HB relation

(HB between transmissions)
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Orderings Constraint System
Denotes a “communicates-before” relation:

Take – away 2:  TEMPORAL ORDERING 26/55



Definition: Race Relation 

Race Formalization

Definition: Race-free Relation
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Definition: Race-free Protocol

Race Formalization (cont.)

Theorem: Race-free Protocol

Take – away 3:  RACE-FREE PROTOCOLS
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2C. Relaxed Protocols



Race Handling

Buyer B
…

price = receive(b);

clb = receive(b); 

Buyer A
…

send(b, share);

Seller
…

send(b,val);

…

price = receive(b);

notifyAll(cnd);

clb = receive(b); 

…

wait(cnd);

send(b, share);

…

send(b,val);

(1)

(2)

Current approaches for protocol formalization declare non-linear protocols as UNSAFE! 

Our goal: relax the tag of “UNSAFE” non-linear protocols, by enforcing safety at the program code level.
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Specification Language for Relaxed Protocols

Given a global protocol G,

1. collect all the event orderings as guards and assumptions, and
2. refine G to account for the guards and assumptions.
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1. Collecting Ordering Assumptions

Communicates-before between the 
sending and receiving events:

Happens-before between events on 
the same party P (program order):

Local events Global orderings
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1. Collecting Ordering Guards

Proof-obligation to check race-freedom:

Theorem: Race-free Protocol

33/55



2. Protocol Refinement

Refinement
(automatically)

Take – away 4:  RELAXED PROTOCOLS
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2D. Modular Protocols



Modular Protocols

1. Make protocols instantiable by treating them as abstract predicates with parameters.  

2. Attach a labelling system which contains instantiable labels and maintains uniqueness of 
transmissions.

3. Create event ordering summaries for each predicate (HB relations between the first and last encounter 
of each communicating party).

4. Synthesize the necessary conditions for a safe synchronization with the environment.

Refinement
(automatically)
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Outline of the talk

1. Related Work

2. Session Logic

A. Specification Language

B. Identify Race Conditions

C. Relaxed Protocols

D. Modular Protocols

3. Communication Verification 

4. Conclusion and Future Work
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Verification Framework

code verifier
(HIP)

predicates lemmascode (C-like) pre/post

logical prover
(SLEEK)

range of pure provers: 

Z3, Omega, Redlog, MONA, etc
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Verification Framework

code verifier
(HIP)

predicates lemmas

range of pure provers: 

Z3, Omega, Redlog, MONA, etc

pre/post

logical prover
(SLEEK)

code (C-like)

temporal constraint prover
CHR
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Framework Overview

P1 P2 Pn

local projection

I1 I2 In

formal protocol
(manually)

relaxed protocol(automatically)
refinement

(automatically)

(automatically)

implementation
(by developer)

code verifier
(HIP)

predicates lemmascode (C-like)

range of pure provers: 
Z3, Omega, Redlog, MONA, etc

pre/post

logical prover
(SLEEK)

CHR

informal protocol express

SPECIFY
VERIFY
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Framework Overview

P1 P2 Pn

local projection

I1 I2 In

formal protocol
(manually)

relaxed protocol(automatically)
refinement

(automatically)

(automatically)

implementation
(by developer)

code verifier
(HIP)

predicates lemmascode (C-like)

range of pure provers: 
Z3, Omega, Redlog, MONA, etc

pre/post

logical prover
(SLEEK)

CHR

informal protocol express

SPECIFY
VERIFY
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Local Projection
per-party 
projection

(automatically)

per channel
projection

(automatically)
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Local Projection
per party 
projection

(automatically)

per channel
projection

(automatically)

Race-free protocol:

Take – away 5: COLLABORATIVE PROVING
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Local Projection
per party 
projection

(automatically)

per channel
projection

(automatically)

SPECIFY
VERIFY

HO predicate example:
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Local Projection
per party 
projection

(automatically)

per channel
projection

(automatically)

SPECIFY
VERIFY

A

S

A, s

S, s
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Communication Primitives
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Collaborative Client – Server (revisited)
Buyer B

int price,clb;

…

price = receive(b);

clb = receive(b); 

if(cond){

send(s, ok);

send(s, addr);

… = receive(s);

}else {

send(s, quit);

}

…

Buyer A

int price,share;

String book;

…

send(s, book);

price = receive(a);

share = foo(price);

send(b, share);

…

Seller

int id, val;

…

id = receive(s);

val = goo(id);

send(a,val);

send(b,val);

ans = receive(s);

if (s==ok){

… = receive(s);

send(b,…);

} 

…
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Collaborative Client – Server (revisited)
Buyer A

int price,share;

String book;

…

send(s, book);

price = receive(a);

share = foo(price);

send(b, share);

…

Seller

int id, val;

…

id = receive(s);

val = goo(id);

send(a,val);

send(b,val);

ans = receive(s);

if (s==ok){

… = receive(s);

send(b,…);

} 

…
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Race Handling (revisited)

Buyer B
…

price = receive(b);

clb = receive(b); 

Buyer A
…

send(b, share);

Seller
…

send(b,val);(1)

Global Store Race free proof obligation projected onto each party
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Race Handling (revisited)

Buyer B
…

price = receive(b);

notifyAll(cnd);

clb = receive(b); 

Buyer A
…

wait(cnd);

send(b, share);

Seller
…

send(b,val);(2)
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Implementation

In OCaml, affixed to HIP/SLEEK.

The constraint ordering system is implemented in CHR.

Highly modular:
•The protocol components are encoded as higher order primitive predicates.

•The predicates are manipulated by user-defined lemmas.

⇒ finely “tunable” logic to cope with future extensions.

Test cases : variation of client-server, variations of the collaborative client – server, atm,  
vending machine, video streaming.
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Outline of the talk

1. Related Work

2. Session Logic

A. Specification Language

B. Identify Race Conditions

C. Relaxed Protocols

D. Modular Protocols

3. Communication Verification 

4. Conclusion and Future Work
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We provide a novel theory and necessary tools to specify 
and reason about distributed systems!

We have shown how to:

… move from types systems → logic  (going beyond type safety)

… achieve composable verification of safety (type-safe, race-free)

via local projection and collaborative proving.

… ensure temporal ordering, without the explicit concept of time

… support relaxed and modular protocols:

realistic non-linear protocols → race-free protocols with explicit synchronization



A Language-Based Approach to Formalizing Protocols

54/55

Thesis:
Language support makes it possible: 
• to specify communication protocols, and then 
• to verify (automatically)  that an implementation conforms to the given protocol 

in a safe way.



Beyond This Talk

More in the dissertation:

- a dyadic session logic which emphasizes the benefits of going beyond traditional type check:
disjunction to replace internal/external choices, higher order-channels,  copy and copyless-message
passing, deadlock detection, delegation.

- multiparty session logic: safety (wrt conformance, race, deadlock) theorems with soundness proofs,
detailed verification examples, nondeterminism, efficient algorithm for collecting ordering
assertions, inference algorithm for synchronization with the context, recursion, delegation,
verification rules, entailment rules, explicit synchronization primitives.

Future work:

- synthesize the specifications for the explicit synchronization mechanisms.

- investigate the formalization of additional properties: consensus of distributed systems.

Thank you!
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Explicit Synchronization
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Explicit Synchronization

Take – away 5:  EXPLICIT SYNCHRONIZATION 62/55



Communication Primitives
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Communication Primitives
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Race Handling

Client B
…

price = receive(b);

notifyAll(cnd);

clb = receive(b); 

Client A
…

wait(cnd);

send(b, share);

Server
…

send(b,val);(1)

Race free proof obligation projected onto each party

wait(cnd);

notifyAll(cnd);
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Collaborative Client – Server (revisited)

Client A Client B Server

alt
cond

¬cond

s(req1)

b(resp1)

a(resp1)

b(collab)

s(ok)

s(quit)

s(req2)

b(resp2)

Take – away 1:  TYPE SYSTEMS -> LOGIC

Different from session types:
1. Messages are described by logical formulae. 
2. Concurrent/arbitrary-ordered transmissions.
3. Uniform treatment of internal/external choice via 

disjunction. 

* DELMOLINO et al., “Step by Step Towards Creating a Safe Smart Contract: Lessons and Insights from a Cryptocurrency Lab”,  in Financial 
Cryptography and Data Security, pp.79-94, 2016

*Common pitfall in creating smart contracts:
the domain of the receiver does not
subsume the domain of the sender.
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Example 3 - Verification

“Release” lemma:

“Join-emp” lemma:
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Example 3 - Verification

x = receive(d);

send(c, … );
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Example 3 – Verification

x = receive(d);

send(c, … );
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Example 3 – Verification

x = receive(d);

send(c, … );
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Communication Protocols – issues 

“A” sends a product id to “B” via channel “c”

A
…
send(c, “TV”);

B
…
int x;
x = receive(c);

Protocol Implementation
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Communication Protocols – issues 

“A” sends a product id to “B” via channel “c”

Type Safety
A

…
send(c, “TV”);

B
…
int x;
x = receive(c);

Protocol Implementation
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Communication Protocols – issues 

“A” sends a product id to “B” via channel “c”

“A” sends to “B” the number of required items via 
channel “d”.

A
…
send(d, 10);
send(d, 10);

B
…
x = receive(d);

A
…
send(c, “TV”);

B
…
int x;
x = receive(c);

Type Safety
Protocol Implementation
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Communication Protocols – issues 

“A” sends a product id to “B” via channel “c”

“A” sends to “B” the number of required items via 
channel “d”.

A
…
send(d, 10);
send(d, 10);

B
…
x = receive(d);

Unexpected transmission

A
…
send(c, “TV”);

B
…
int x;
x = receive(c);

Type Safety
Protocol Implementation
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Communication Protocols – issues 

“A” sends a product id to “B” via channel “c”

“A” sends to “B” the number of required items via 
channel “d”.

“A” first sends the result to “B”
and then to “C” via channel “c”

A
…
send(d, 10);
send(d, 10);

B
…
x = receive(d);

A
…
send(c, “Pass”);
send(c, “Fail”);

B
…
a = receive(c);

C
…
a = receive(c);

Unexpected transmission

A
…
send(c, “TV”);

B
…
int x;
x = receive(c);

Type Safety
Protocol Implementation
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Communication Protocols – issues 

“A” sends a product id to “B” via channel “c”

“A” sends to “B” the number of required items via 
channel “d”.

“A” first sends the result to “B”
and then to “C” via channel “c”

A
…
send(d, 10);
send(d, 10);

B
…
x = receive(d);

A
…
send(c, “Pass”);
send(c, “Fail”);

B
…
a = receive(c);

C
…
a = receive(c);

Unexpected transmission

Who reads “Pass”? 
Race on reading from c!

A
…
send(c, “TV”);

B
…
int x;
x = receive(c);

Type Safety
Protocol Implementation
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Communication Protocols – issues 

“A” sends a product id to “B” via channel “c”

“A” sends to “B” the number of required items via 
channel “d”.

“A” first sends the result to “B”
and then to “C” via channel “c”

A
…
send(d, 10);
send(d, 10);

B
…
x = receive(d);

A
…
send(c, “Pass”);
send(c, “Fail”);

B
…
a = receive(c);

C
…
a = receive(c);

Unexpected transmission

Transmission Race

Who reads “Pass”? 
Race on reading from c!

A
…
send(c, “TV”);

B
…
int x;
x = receive(c);

Type Safety
Protocol Implementation
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Entailment Check – selected rules
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Entailment – extension of Concurrent Separation Logic

Separation Logic’s frame rule:

CSL frame rule:
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Entailment – extension of Concurrent Separation Logic

Separation Logic’s frame rule:

CSL frame rule:

Separation in space!
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Entailment – extension of Concurrent Separation Logic

Separation Logic’s frame rule:

CSL frame rule:

CSL + Ordering System:              Separation in space + Separation in time

Separation in space!
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Orderings Collection

Example 3: 
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Orderings Collection

Example 3: 

B1 B2F1 F2

B F
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Orderings Collection

Example 3: 

B1 B2F1 F2

B F
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Orderings Collection

Example 3: 

B1 B2F1 F2

B F
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Well-formedness ( * )
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Well-formedness ( \/ )
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A Session Logic for
Relaxed Communication Protocols



Relaxed Communication Protocols – Motivation (i)

“A” first sends the result to “B” and then to “C” via channel “c”

(1)

A
…
send(c, “Pass”);
send(c, “Fail”);

B
…
a = receive(c);

C
…
a = receive(c);
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Relaxed Communication Protocols – Motivation (i)

“A” first sends the result to “B” and then to “C” via channel “c”

(1)

A
…
send(c, “Pass”);
send(c, “Fail”);

B
…
a = receive(c);
notifyAll(w);

C
…

wait(w);
a = receive(c);

(2)

A
…
send(c, “Pass”);
send(c, “Fail”);

B
…
a = receive(c);

C
…
a = receive(c);
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Relaxed Communication Protocols – Motivation (i)

“A” first sends the result to “B” and then to “C” via channel “c”
A

…
send(c, “Pass”);
send(c, “Fail”);

B
…
a = receive(c);

C
…
a = receive(c);

A
…
send(c, “Pass”);
send(c, “Fail”);

B
…
a = receive(c);
notifyAll(w);

C
…

wait(w);
a = receive(c);

(1)

(2)

Current approaches for session formalization declare this protocol as UNSAFE! 
(due to race on reading from “c”)
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Relaxed Communication Protocols – Motivation (i)

“A” first sends the result to “B” and then to “C” via channel “c”
A

…
send(c, “Pass”);
send(c, “Fail”);

B
…
a = receive(c);

C
…
a = receive(c);

A
…
send(c, “Pass”);
send(c, “Fail”);

B
…
a = receive(c);
notifyAll(w);

C
…

wait(w);
a = receive(c);

(1)

(2)

Current approaches for session formalization declare this protocol as UNSAFE! 
(due to race on reading from “c”)

Our goal: relax the tag of “SAFE” protocols, and enforce safety at the program code level.
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Relaxed Communication Protocols – Motivation (ii)

“B” and “C” send their computation result to “A” via channel “c”

A
…
x = receive(c);
y = receive(c);
return x + y;

B
…
send(c,10);

C
…
send(c,15);
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Relaxed Communication Protocols – Motivation (ii)

“B” and “C” send their computation result to “A” via channel “c”

However, parallel computing has been used to model difficult problems in many areas: rush hour 
traffic, weather, auto assembly, photonics, molecular sciences, etc. 

A
…
x = receive(c);
y = receive(c);
return x + y;

B
…
send(c,10);

C
…
send(c,15);

Current approaches for session formalization declare this protocol as UNSAFE! 
(due to race on sending to “c”)
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Collaborative Client – Server (revisited)

Take – away 1:  TYPE SYSTEMS -> LOGIC

Client A Client B Server

alt
cond

¬cond

s(req1)

b(resp1)

a(resp1)

b(collab)

s(ok)

s(quit)

s(req2)

b(resp2)
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Example 1

“A” first sends the result to “B” and then to “C” via channel “c”

A
…
send(c, “Pass”);
send(c, “Fail”);

B
…
a = receive(c);
notifyAll(w);

C
…

wait(w);
a = receive(c);
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Example 1

“A” first sends the result to “B” and then to “C” via channel “c”

A
…
send(c, “Pass”);
send(c, “Fail”);

B
…
a = receive(c);
notifyAll(w);

C
…

wait(w);
a = receive(c);
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Example 1

“A” first sends the result to “B” and then to “C” via channel “c”

Introduce a proof obligation on event ordering  to prove that 
B happens-before C

A
…
send(c, “Pass”);
send(c, “Fail”);

B
…
a = receive(c);
notifyAll(w);

C
…

wait(w);
a = receive(c);
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Example 2

A
…
send(c, “TV”);

B
…
String x = receive(c);
int y = receive(c);

C
…

send(c,2);

Race on writing to c!

“A” sends to “B” a string and then “C” sends to “B” an integer via channel “c”

100/5
5



Example 2

“A” sends to “B” a string and then “C” sends to “B” an integer via channel “c”

A
…
send(c, “TV”);
notifyAll(w);

B
…
String x = receive(c);
int y = receive(c);

C
…

wait(w);
send(c,2);
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Example 2

“A” sends to “B” a string and then “C” sends to “B” an integer via channel “c”

A
…
send(c, “TV”);
notifyAll(w);

B
…
String x = receive(c);
int y = receive(c);

C
…

wait(w);
send(c,2);

Introduce a proof obligation on event ordering to prove that 
A happens-before C
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Introduce Race-Free Guards

To ensure race-freedom on c, prove that:

HB between events HB between transmissions
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Happens-Before Relation

104/5
5



Protocols Diagrammatic View 

Example to highlight adjacent transmissions:
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COMMUNICATION PROTOCOLS – issues (revisited)

“A” sends a product id to “B” via channel “c”

FAIL

A
…
send(c, “TV”);

B
…
int x;
x = receive(c);

Type Safety
Protocol
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COMMUNICATION PROTOCOLS – issues (revisited)

“A” sends a product id to “B” via channel “c”

“A” sends to “B” the number of required items via 
channel “d”.

A
…
x = receive(d);
send(d, 10);

B
…
x = receive(d);

Verification fails due to unexpected transmission

FAIL

Type Safety A
…
send(c, “TV”);

B
…
int x;
x = receive(c);

Protocol
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COMMUNICATION PROTOCOLS – issues (revisited)

“A” first sends the result to “B” and then to “C” via channel “c”

A
…
send(c, “Pass”);
send(c, “Fail”);

B
…
a = receive(c);

C
…
a = receive(c);

A
…
send(c, “Yes”);
send(c, “No”);

B
…
a = receive(c);
notifyAll(w);

C
…

wait(w);
a = receive(c);

Fail due to data race

Succeeds due to explicit sync
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Relaxed Communication Protocols - issues (revisited)

Nondeterminism:

A
…
x = receive(c);
y = receive(c);
return x + y;

B
…
send(c,10);

C
…
send(c,15);

Succeeds with extra conditions: (i) same receiver, (ii) equivalent messages

109/5
5



Modular Protocols

Client A Client B Server

alt
cond

¬cond

s(req1)

a(resp1)

b(collab)

s(ok)

s(quit)

s(req2)

b(resp2)

Client Server

alt
cond

¬cond

s(req1)

c(resp1)

s(ok)

s(quit)

s(req2)

c(resp2)

b(resp1)

Client 1 Client 2

b(collab)

b(resp1)

1. Make protocols instantiable by adding protocol parameters.  

2. Attach a labelling system which contains instantiable labels and maintains uniqueness of 
transmissions.

3. Create event ordering summaries for each predicate.
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Session types
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State of the Art
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Logics with channel primitives:

• CSL for copyless message passing [VIL09]: an extension of separation for bidirectional communication 
between two players using global contracts

• CSL for pipelined parallelization [BEL10]: an extension of separation logic which supports multiple 
players communicating through a single shared channel

• Chalice[LEI09] with support for message passing [LEI10]: modular verification to prevent deadlocks of 
programs which mix message passing and locking.

[VIL09]  VILLARD , J., L OZES , É., and C ALCAGNO , C., “Proving copyless message passing,” in APLAS 2009 , pp. 194–209, Springer.
[BEL10] BELL , C. J., APPEL , A. W., and WALKER , D., “Concurrent Separation Logic for Pipelined Parallelization,” in SAS 2010, pp. 151–166, Springer.
[LEI10] LEINO , K. R. M., MÜLLER , P., and SMANS , J., “Deadlock-Free Channels and Locks,” in ESOP 2010, pp. 407–426, Springer.
[LEI09] LEINO , K. R. M. and MÜLLER , P., “A Basis for Verifying Multi-Threaded Programs,” in ESOP 2009 pp. 378–393, Springer.

Related Work
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